• CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • MHT CET Result 2024
  • JEE Advanced Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • AP EAMCET Result 2024
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2024
  • CAT 2024 College Predictor
  • Top MBA Entrance Exams 2024
  • AP ICET Counselling 2024
  • GD Topics for MBA
  • CAT Exam Date 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet
  • CUET DU CSAS Portal 2024
  • CUET Response Sheet 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Importance Of Vaccination Essay

A vaccination is a treatment that increases immunity to a specific illness. It is a biologically produced item that includes typical components resembling a disease-causing bacteria, generated from weak or dead versions of the microbe. It aids in immune system stimulation, identifies invasive bacteria as foreign invaders, and helps eradicate them so that the immune system can detect and eradicate any microorganism it encounters. Here are a few sample essays on ‘Importance Of Vaccination’.

Importance Of Vaccination Essay

100 Words Essay On Importance Of Vaccination

Vaccinations are a critical aspect of modern medicine, designed to protect individuals from harmful illnesses. They work by introducing a small, harmless dose of a microbe or its components, such as a protein or toxin, into the body. This exposure triggers the immune system to recognize and respond to the invader, allowing it to quickly identify and eliminate the pathogen if encountered again in the future.

One of the main reasons why vaccination is so important is that it helps to prevent the spread of infectious diseases. By providing immunity to a specific illness, vaccinations can help to reduce the number of people who become sick from that disease. This not only benefits the individuals who are vaccinated, but also those around them, particularly those who are unable to receive the vaccine due to underlying health conditions or other reasons.

Vaccination also plays a crucial role in herd immunity. Herd immunity is achieved when a large percentage of a population is vaccinated, making it difficult for a disease to spread. This protects not only the vaccinated individuals but also those who are unable to be vaccinated, such as newborns and people with certain medical conditions.

In conclusion, vaccinations are a safe and effective way to protect ourselves and our communities from harmful illnesses. They are a crucial tool in the fight against the spread of infectious diseases and help to ensure the health and well-being of all individuals.

200 Words Essay On Importance Of Vaccination

To prevent hazardous infections, vaccination is a simple, secure, reliable method that can be applied before you are exposed to them. As a result, your immune system is boosted, and your body's natural defences to infection are reinforced. Vaccines train your immune system to produce antibodies when exposed to a disease. A vaccine, however, does not cause an illness or increase your risk of contracting it since it only contains dead or weakened versions of bacteria or viruses.

How It Works

Natural defences of your body work together with vaccines to create immunity. Your immune system reacts when you receive a vaccination . It recognizes the bacterium or virus that is causing the invasion. Generated antibodies Proteins called antibodies are naturally created by the immune system to combat disease. In the future, if you are exposed to the pathogen, your immune system can quickly wipe it out before you get sick.

To receive the vaccine, individuals must regularly check with their local and state health departments. When the opportunity presents itself, they must take advantage of it. Some persons with specific immune system problems shouldn't have particular vaccines, and they should first see their doctors. Additionally, a small percentage of people do not react to a certain vaccine. It's crucial that everyone else have vaccinations because these people cannot be immunized. The great majority of people's "herd immunity" is preserved as a result. This implies that a disease will stop spreading if the majority of people are immune to it as a result of vaccination.

500 Words Essay On Importance Of Vaccination

The primary purpose of vaccinations is to protect by identifying and combating diseases like viruses or bacteria. Measles, polio, tetanus, diphtheria, meningitis, influenza, typhoid, and cervical cancer are among the deadly illnesses that can be avoided with vaccination . The substance used for immunization is the vaccine. The vaccine is made from weakened or dead microorganisms and contains components comparable to those found in the microbe that uses one of its toxins or surface proteins to cause the disease. The vaccine aids in boosting the immune system's ability to recognize and eliminate foreign objects. The Smallpox vaccine was the first to be developed.

Secure And Reliable

Vaccines are the best defence against a potentially fatal, preventable, and contagious disease. Although vaccines are among the safest medical medicines on the market, some precautions should be taken. People can make decisions regarding vaccinations with the help of precise information on the benefits and potential adverse effects of vaccines.

Do Vaccines Work?

Most vaccines provide immunity in 90–100% of cases. At the same time, improved sanitation and hygiene can undoubtedly contribute to preventing disease and the microorganisms that cause conditions to remain. As long as bacteria exist, people will continue to get sick.

You can see that once a vaccine is approved, the number of cases of diseases that can be prevented by vaccination begins to decline. Every year, vaccines save millions of lives. The number of people in the same community is protected from diseases when a specific area of a city or town is vaccinated against a contagious disease since the likelihood of an outbreak is reduced. The concept of immunity deals with preventing infectious diseases like rabies, measles, mumps, influenza, and pneumococcal disease.

History Of Vaccination

Before the first vaccines, humans were injected against smallpox in China and other places using cowpox, a practice known as variolation. This practice was copied in the west. The first mention of variolation as a treatment for smallpox dates back to China in the 10th century.

In 1796, a physician named Edward Jenner from Berkeley, Gloucestershire, England, tested the theory that someone with cowpox would be resistant to smallpox. To test the idea, he gave cowpox vesicles from a milkmaid named Sarah Nelmes to an eight-year-old boy named James Phipps. Two months later, he gave the child a smallpox injection, but smallpox did not manifest. There was a lot of interest in Jenner's 1798 Inquiry into the Causes and Effects of the Variolae Vaccine.

He distinguished between "real" and "false" cowpox (which did not give the desired effect). He created an "arm-to-arm" technique to spread the vaccine from a vaccinated person's pustules. Smallpox contamination delayed early attempts at confirmation, but by 1801, his paper had been translated into six other languages, and more than 100,000 people had received vaccinations, despite controversy in the medical field and religious opposition to the use of animal products. The term "vaccination" was created by surgeon Richard Dunning and was first used in his 1800 book ‘Some notes on immunization’.

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

TOEFL ® Registrations 2024

TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

PTE Exam 2024 Registrations

PTE Exam 2024 Registrations

Register now for PTE & Save 5% on English Proficiency Tests with ApplyShop Gift Cards

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

Advertisement

magnifying glass icon

Intermittent Fasting

A shingles rash on a man’s back

Pre-Exposure Prophylaxis (PrEP)

Profilaxis previa a la exposición (prep), the importance of vaccinations.

Last Updated August 2023 | This article was created by familydoctor.org editorial staff and reviewed by Deepak S. Patel, MD, FAAFP, FACSM

Print Friendly, PDF & Email

Related Topics

Childhood vaccines: what they are and why your child needs them, immunization schedules, preventive services for healthy living.

Name (required)

Mail (will not be published) (required)

Gimme a site! Just a username, please.

Remember Me

There has been confusion and misunderstandings about vaccines. But vaccinations are an important part of family and public health. Vaccines prevent the spread of contagious, dangerous, and deadly diseases. These include measles, polio, mumps, chicken pox, whooping cough, diphtheria, HPV, and COVID-19.

The first vaccine discovered was the smallpox vaccine. Smallpox was a deadly illness. It killed 300 million to 500 million people around the world in the last century. After the vaccine was given to people, the disease was eventually erased. It’s the only disease to be completely destroyed. There are now others close to that point, including polio.

When vaccination rates decline, cases of preventable diseases go up. This has been happening in recent years with measles. As of July 7, 2023, the Centers for Disease Control has been notified of 18 confirmed cases in 12 U.S. jurisdictions. That may not seem like a lot but compare it with just 3 cases during the same time in 2022. By the end of 2022, there were 121 cases. Almost all those cases could have been prevented with vaccines.

What are vaccines?

A vaccine (or immunization) is a way to build your body’s natural immunity to a disease before you get sick. This keeps you from getting and spreading the disease.

For some vaccines, a weakened form of the disease germ is injected into your body. This is usually done with a shot in the leg or arm. Your body detects the invading germs (antigens) and produces antibodies to fight them. Those antibodies then stay in your body for a long time. In many cases, they stay for the rest of your life. If you’re ever exposed to the disease again, your body will fight it off without you ever getting the disease.

Some illnesses, like strains of cold viruses, are fairly mild. But some, like COVID-19, smallpox or polio, can cause life-altering changes. They can even result in death. That’s why preventing your body from contracting these illnesses is very important.

How does immunity work?

Your body builds a defense system to fight foreign germs that could make you sick or hurt you. It’s called your immune system. To build up your immune system, your body must be exposed to different germs. When your body is exposed to a germ for the first time, it produces antibodies to fight it. But that takes time, and you usually get sick before the antibodies have built up. But once you have antibodies, they stay in your body. So, the next time you’re exposed to that germ, the antibodies will attack it, and you won’t get sick.

Path to improved health

Everyone needs vaccines. They are recommended for infants, children, teenagers, and adults. There are widely accepted immunization schedules available. They list what vaccines are needed, and at what age they should be given. Most vaccines are given to children. It’s recommended they receive 12 different vaccines by their 6th birthday. Some of these come in a series of shots. Some vaccines are combined so they can be given together with fewer shots.

The American Academy of Family Physicians (AAFP) believes that immunization is essential to preventing the spread of contagious diseases. Vaccines are especially important for at-risk populations such as young children and older adults. The AAFP offers vaccination recommendations,  immunization schedules , and information on disease-specific vaccines.

Being up to date on vaccines is especially important as children head back to school. During the 2021 school year, state-required vaccines among kindergarteners dropped from 95% to 94%. In the 2021-2022 year it fell again to 93%. Part of this was due to disruptions from the COVID-19 pandemic.

Is there anyone who can’t get vaccines?

Some people with certain immune system diseases should not receive some types of vaccines and should speak with their health care providers first.  There is also a small number of people who don’t respond to a particular vaccine. Because these people can’t be vaccinated, it’s very important everyone else gets vaccinated. This helps preserve the “herd immunity” for the vast majority of people. This means that if most people are immune to a disease because of vaccinations, it will stop spreading.

Are there side effects to vaccines?

There can be side effects after you or your child get a vaccine. They are usually mild. They include redness or swelling at the injection site. Sometimes children develop a low-grade fever. These symptoms usually go away in a day or two. More serious side effects have been reported but are rare.

Typically, it takes years of development and testing before a vaccine is approved as safe and effective. However, in cases affecting a global, public health crisis or pandemic, it is possible to advance research, development, and production of a vaccine for emergency needs. Scientists and doctors at the U.S. Food and Drug Administration (FDA) study the research before approving a vaccine. They also inspect places where the vaccines are produced to make sure all rules are being followed. After the vaccine is released to the public, the FDA continues to monitor its use. It makes sure there are no safety issues.

The benefits of their use far outweigh any risks of side effects.

What would happen if we stopped vaccinating children and adults?

If we stopped vaccinating, the diseases would start coming back. Aside from smallpox, all other diseases are still active in some part of the world. If we don’t stay vaccinated, the diseases will come back. There would be epidemics, just like there used to be.

This happened in Japan in the 1970s. They had a good vaccination program for pertussis (whooping cough). Around 80% of Japanese children received a vaccination. In 1974, there were 393 cases of whooping cough and no deaths. Then rumors began that the vaccine was unsafe and wasn’t needed. By 1976, the vaccination rate was 10%. In 1979, there was a pertussis epidemic, with more than 13,000 cases and 41 deaths. Soon after, vaccination rates improved, and the number of cases went back down.

Things to consider

There have been many misunderstandings about vaccines. There are myths and misleading statements that spread on the internet and social media about vaccines. Here are answers to 5 of the most common questions/misconceptions about vaccines.

Vaccines do NOT cause autism.

Though multiple studies have been conducted, none have shown a link between autism and vaccines.  The initial paper that started the rumor has since been discredited.

Vaccines are NOT too much for an infant’s immune system to handle.

Infants’ immune systems can handle much more than what vaccines give them. They are exposed to hundreds of bacteria and viruses every day. Adding a few more with a vaccine doesn’t add to what their immune systems are capable of handling.

Vaccines do NOT contain toxins that will harm you.

Some vaccines contain trace amounts of substances that could be harmful in a large dose. These include formaldehyde, aluminum, and mercury. But the amount used in the vaccines is so small that the vaccines are completely safe. For example, over the course of all vaccinations by the age of 2, a child will take in 4mg of aluminum. A breast-fed baby will take in 10mg in 6 months. Soy-based formula delivers 120mg in 6 months. In addition, infants have 10 times as much formaldehyde naturally occurring in their bodies than what is contained in a vaccine. And the toxic form of mercury has never been used in vaccines.

Vaccines do NOT cause the diseases they are meant to prevent.

This is a common misconception, especially about the flu vaccine. Many people think they get sick after getting a flu shot. But flu shots contain dead viruses—it’s impossible to get sick from the shot but mild symptoms can occur because the vaccine may trigger an immune response, which is normal. Even with vaccines that use weakened live viruses, you could experience mild symptoms similar to the illness. But you don’t actually have the disease.

We DO still need vaccines in the U.S., even though infection rates are low.

Many diseases are uncommon in the U.S. because of our high vaccination rate. But they haven’t been eliminated from other areas of the world. If a traveler from another country brings a disease to the U.S., anyone who isn’t vaccinated is at risk of getting that disease. The only way to keep infection rates low is to keep vaccinating.

Questions to ask your doctor

  • Why does my child need to be vaccinated?
  • What are the possible side effects of the vaccination?
  • What do I do if my child experiences a side effect from the vaccine?
  • What happens if my child doesn’t get all doses of the recommended vaccines? Will he or she be able to go to daycare or school?
  • We missed a vaccination. Can my child still get it late?
  • Are there new vaccines that aren’t on the immunization schedules for kids?
  • What should I do if I don’t have health insurance, or my insurance doesn’t cover vaccinations?
  • What vaccinations do I need as an adult?
  • Why do some people insist they became sick after getting the flu vaccine?

Centers for Disease Control and Prevention: Vaccines & Immunizations

Last Updated: August 10, 2023

This article was contributed by familydoctor.org editorial staff.

American Academy of Family Physicians Logo

Copyright © American Academy of Family Physicians

This information provides a general overview and may not apply to everyone. Talk to your family doctor to find out if this information applies to you and to get more information on this subject.

Related Articles

Most schools and daycares require certain childhood vaccines, but they’re also good for your child’s health.

Certain immunizations are important at every age to reduce illness, hospitalization, or death.

A preventive service might be a test, an immunization or vaccine, or advice from your doctor. These services can…

Family Doctor Logo

familydoctor.org is powered by

American Academy of Family Physicians Logo

Visit our interactive symptom checker

importance of vaccination essay brainly

NFID

Talk with a healthcare professional about vaccines recommended for you and your family

Updated July 2023

Source: Centers for Disease Control and Prevention

Here’s Why Vaccines Are so Crucial

If children in poor countries got the shots that rich countries take for granted, hundreds of thousands of young lives could be saved.

Biology, Health

Loading ...

Go see the child, Samir Saha said. Just sit with her. Probably the siblings will be there too, the brother and sister whose lives are also altered permanently.

‘This is why the vaccine is so important,’ Saha said.

‘We want to reduce this number to a minimum if not zero. So no other children will be like this.’

It was a little after dawn in Dhaka, the capital of Bangladesh, and Saha was in the back seat of his car, brooding. A uniformed driver threaded the Toyota through a cacophonous mess of jitneys, motorcycles, rickshaws , trucks, and battered buses with passengers hanging out the doors. “We could save the life, but we could not …” He left the sentence unfinished. “You’ll be seeing the scenario,” he said. “You’ll understand.”

Saha is a microbiologist, internationally renowned for his research on a bacterium called pneumococcus. The laboratory he founded is wedged into one corner of Dhaka Shishu, the biggest children’s hospital in Bangladesh. Just down the hall, rows of beds fill the open wards; during family hours, each bed seems to hold both a sick child and many attentive relatives. Inside the lab, white-jacketed men and women spend their days in intimate study of pneumococcal cells : hunting for them in vials of blood and other bodily fluids, smearing them into petri dishes, peering at them through microscopes .

Pneumococcal bacteria are ubiquitous in the modern world; easily spreadable through sneezing or casual contact, they can live without ill effect in the nasal passages of people with healthy immune systems . But when our defenses fail us, pneumococcus can migrate, multiply, and set off life-threatening infectious disease. Young children are especially vulnerable. Young children in places without ready access to antibiotics and good medical care are the most vulnerable of all. At the start of the 21st century, as the world’s first effective children’s vaccine became available in the United States and Canada, pneumococcal disease was killing more than 800,000 children worldwide every year—more than three-quarters of a million infants and kids under five, that is, dying not from some headline epidemic like Ebola or Zika but from a common organism that blew up into pneumonia (infected lungs) or meningitis (infected brain lining) or a mortal assault on the bloodstream . The vast majority of those deaths were occurring in impoverished countries such as Bangladesh.

In 2015 pneumococcal conjugate vaccine, as the children’s formulation is called, reached the Bangladeshis, and Saha’s research team is intently tracking its progress. If PCVs prove as effective around the world as vaccine experts hope, they promise both a greatly lowered mortality rate—that’s many thousands of small children staying alive instead of dying before they’re old enough to start school—and much less nonmortal sickness. Less of the rapid pneumonia breathing; less of the fever, the sucking chest, the rattling cough, the blue lips, the bedside watch by parents pulled away from the paid work that supports their other children. Less …  suffering,  I kept hearing Saha and his Bangladeshi colleagues say, as though sensing that an outsider might need help appreciating the stakes.

Because from the vantage of a country like the United States, it can be easy to imagine that the most pressing vaccine challenge of 2017 lies in convincing certain communities of skeptical parents that they really ought to inoculate their kids. Those efforts are important, to be sure. But even more urgent—more ambitious , more complex, involving many governments and billions of philanthropic dollars—is the international collaboration to get new vaccines to children in the developing world, where to this day the suffering caused by vaccine -preventable disease is as vivid and nontheoretical as the frantic families Saha sees every day in the halls of Dhaka Shishu.

This is why he was sending me to Sanjida Sahajahan, 11 years old, the middle child of a rickshaw repairman and his wife. Go now, Saha said, as we pulled up to the hospital’s main gate; when you come back, we shall discuss what you observed. Jamal and Tasmim will accompany you. That van in the parking lot is waiting.

The hospital van bumped through crowded Dhaka streets that kept narrowing until we were inching past market displays: piles of sweet potatoes and used clothes and car parts. The road ran out of vehicle room. We got out to walk. Jamal Uddin is a physician, Tasmim Sultana Lipi a community health worker, and the two of them knew the right muddy passageways to follow. Along metal-roofed buildings to either side, barred windows offered glimpses of family after family inhabiting separate single rooms.

Lipi nodded toward one of the doorways and ducked in. Observing neighborhood protocol, we all removed our shoes.

Sanjida, who had been carried into Dhaka Shishu at the age of three with what turned out to be pneumococcal meningitis, was propped up in a small plastic armchair beside the family bed. Meningitis is an inflammation , sometimes irreversibly destructive, of the membranes that surround the brain and spinal cord. Sanjida has no control over her head, her grimaces, or the sounds she makes—mewling cries, mostly, as she is unable to form words. Her mother, Nazma, had been outside with the baby when we arrived; in these rooms nine families share two toilets and a single tap, and now Nazma hurried in, holding the baby in one arm, wiping dry her face. She lowered herself onto a stool. She took Sanjida’s hand.

In Bangla, she told us the story: their bright, talkative three-year-old’s unexplained fever; the neighbors urging acetaminophen, for sale in a shop nearby; the fever receding after the pills; the fever rising again. A few days later came the first convulsion and the terrified journey to the hospital—by bus and motorcycle taxi, as a rickshaw repairman doesn’t have the means to summon an ambulance. By the time doctors saw Sanjida, she was losing consciousness. Her last understandable words, Nazma said, were “Hug me. I feel very bad.”

Sanjida’s father, Mohammad, stood quietly while Nazma spoke. Their 14-year-old son came in and picked up the baby and stood too; there was nowhere else to sit. A disassembled wheelchair had been shoved beneath the bed—a charity gift, Nazma said, very nice idea, but their living quarters were too small. A wall cabinet held toys and dishware, and now Mohammad pulled from a drawer a creased yellow card: Sanjida’s national health record. Here was her birth date, in September 2005.

And here, the first markings dated six weeks later, were the notations for Sanjida’s vaccinations. Like her older brother, Sanjida received every inoculation then in Bangladesh’s national immunization plan, on schedule and for free: whooping cough, measles, diphtheria , tuberculosis , tetanus, hepatitis B, polio . No smallpox ; worldwide vaccination had already erased that disfiguring contagion from the planet by 1980, two centuries after the English physician Edward Jenner published his famous treatise on deliberately infecting children with cowpox, a mild virus that turned out to stimulate immunity against the far more serious smallpox .

An extraordinary global health history had been abbreviated, in a way, on Sanjida’s little yellow card. No one can tally accurately the total number of lives saved by widespread vaccination, but it remains one of the greatest achievements of modern medicine . Measles, for example, was killing more than two million children a year worldwide in the 1980s; by 2015, according to the World Health Organization, vaccination had dropped the death toll to 134,200. Mass vaccination has ended polio in all but three countries; Bangladesh and its giant neighbor India were pronounced polio free in March 2014. And when I asked Nazma how she first learned about vaccines —what gave her the idea that taking healthy babies for injections was a good idea?—she looked startled. Then she responded with a passionate outpouring that Uddin and Lipi distilled into English:  But every Bangladeshi knows this.

On television—the Sahajahans’ is crammed in atop that wall cabinet—popular singers and athletes in public service ads praise the lifesaving gift of inoculation. Encouragements to vaccinate trumpet from thousands of minarets , like calls to prayer; Bangladesh is predominantly Muslim , and while pushing for polio inoculation in the late 1980s, health officials and Islamic leaders together came up with a plan for “ mosque miking.” Once, in a village outside Dhaka, the local imam proudly pushed up a sleeve to show me the trace of his last tuberculosis vaccination. Protecting one’s health is part of a religiously observant life, he explained, and faithful parents are obliged to do the same for their children.

Delivering vaccines in Bangladesh isn’t easy. The terrain is crisscrossed by flooding rivers and barely passable roads, and the vaccines must be kept at just the right cold temperature to preserve their potency. Maintaining this “cold chain” is an urgent priority for immunization programs in all countries with hot climates and shaky power grids ; a single faulty chiller or a rural power outage can wreck a whole batch of vaccine . But Bangladesh has worked hard to preserve the cold chain, equipping local health centers with solar panels, pressing bicycles and riverboats into service to ferry vaccines to the most remote clinics.

The Bangladeshi inoculation program is widely respected for its remarkable reach, in fact, and on the way back to Dhaka Shishu, the three of us silent and sad in the hospital van, I understood what Samir Saha most wanted me to see. By 2005, when the infant Sanjida got all her shots, the new vaccine against pneumococcal infection was routinely being injected into children all over the United States and was spreading fast across the developed world. The problem was in places like Bangladesh, which needed the vaccine far more desperately but couldn’t pay what the manufacturer had decided to charge.

Vaccines , with very few exceptions, are made by private companies, in business to return a profit. Until recently, their manufacture worldwide has been dominated by a few U.S. and European pharmaceutical giants. As officials of these companies point out when advocacy organizations like Doctors Without Borders press them to lower their prices (or else open their books to prove why they can’t), developing a new vaccine is especially expensive. After all, it typically involves injecting a disabled germ or fragment of a germ into healthy trial participants—followed by a drawn-out process of watching and waiting to make certain the vaccine isn’t harmful, that it stimulates an immune response against the infectious germ , and that the people who receive it contract the disease less often than those who don’t. All that takes years.

For a pneumococcal vaccine that worked right in children, it took decades. Good adult vaccines were on the market by the early 1980s, but they never set off the hoped-for immune response in small kids. It wasn’t until the late 1990s that researchers finally found a way to biologically amend, or “conjugate,” the contents of those adult vaccines so they would be recognized by immature immune systems.

Pneumococcus presents another vexing challenge: Saha and other scientists have identified nearly a hundred versions, or serotypes, of pneumococcal cells. Serotypes can be geographically distinct, and for reasons not yet fully understood, only a small number are dangerous. (Serotype 1, for example, causes comparatively little disease in the United States but is a prime source of pneumococcal illness and death in Africa and South Asia.) So a finished vaccine that works for children and targets exactly the right serotypes is really multiple vaccines, individually amended and tested and then mixed into one vial.

All these complications helped make the first children’s pneumococcal vaccine one of the most expensive in history. Called Prevnar, it was launched in early 2000 by the American pharmaceutical company Wyeth (which was later taken over by Pfizer). It was formulated to work against the seven serotypes responsible for most of the disease—in the United States, that is, which could absorb a children’s vaccine priced at $232 per four-dose course. Among the dangerous kinds of pneumococcus that vaccine was  not   formulated to fight off was serotype 1. Yet the poorest regions of Africa and South Asia are precisely where any pneumococcal infection is likeliest to kill a child or leave her crippled for life—not just because parents can’t reach a doctor in time but also because the bacteria do extra damage inside small bodies already weakened by malnutrition , other lingering diseases, and too much exposure to cook-fire smoke.

“When I started work on this, what kept me up at night was the inequity,” says Orin Levine, vaccine delivery director at the Bill and Melinda Gates Foundation. Years ago a colleague of his watched a woman in a Mali hospital lose a daughter to pneumococcal pneumonia; she’d lost another daughter the same way. Levine still remembers the mother’s name. His own daughters were about the same age.

“The chances of a kid dying of pneumococcal disease in the rich world were a hundredfold less,” he says. “Why was it that my kids could get the vaccine when Tiemany Diarra’s kids, Mali’s kids, needed it more and didn’t get it?”

He knew the answer, of course: The surest economic return to vaccine manufacturers doesn’t come from meeting the most critical need.

Imagine Levine's frustration echoed by a world of vaccine experts, and you understand the impetus behind the Global Alliance for Vaccines and Immunisation, or Gavi. This multibillion-dollar public-private collaboration got under way in 2000, just as PCVs reached the U.S. market. Kicked off in part by a $750 million pledge from the Gates Foundation, Gavi channels wealthy nations’ resources—private philanthropy plus government aid from such countries as the United States, the United Kingdom, and Norway—into vaccine support for poorer countries that apply for the aid. Gavi helps negotiate with vaccine companies to slash prices specifically for those large-volume sales; subsidies from the donor fund then reduce the cost to developing countries even further, so that they pay a small fraction of the usual market price.

“It’s been absolutely transformational—the financial muscle and the dedication that global actors and manufacturers and countries have agreed to,” says Katherine O’Brien, a pediatrician and pneumococcus expert who directs the International Vaccine Access Center at Johns Hopkins University. Gavi wasn’t assembled just to help with pneumococcal vaccine, O’Brien points out; the alliance concentrated at first on making established childhood inoculations like tetanus and hepatitis B more accessible.

PCVs joined the vaccine list only in 2010, after years of continued testing and negotiation. But the demand from developing countries was so high that soon Gavi was devoting a half billion donor dollars a year to PCV support—the alliance’s single biggest financial commitment. A special arrangement with Pfizer and GSK, the only companies currently making PCVs, is supposed to ensure there will be enough supply; both have promised to produce as much vaccine, at the Gavi-arranged discount, as each of the receiving countries agrees to buy.

With those deals in place, the manufacturers have also developed new formulations that extend the effectiveness of PCVs to include children a long way from the U.S. and Europe. In 2010 Pfizer released a new blend called Prevnar 13, designed to work against serotype 1 and five others not targeted in the original mix. The GSK product, introduced in 2009, also is configured to fight serotypes prevalent in Africa and Asia. And since March 2015, when Bangladeshi health officials received their inaugural delivery of Gavi-discounted PCV, vaccine shipments have arrived by air freight every three months from a GSK distribution center in Belgium.

“Small chiller boxes,” Saha told me. “Like when you are going camping. But these are a little more sophisticated, with monitoring systems for the temperature.”

The vaccines, health officials say, are reaching families all over the country. Bangladesh, at least so far, has experienced no surge of “vaccine hesitancy,” as global health experts prefer to call the problem of parents declining to vaccinate their children. Elsewhere in South Asia, suspicion and hostility have troubled recent inoculation campaigns; in Pakistan, for example, polio vaccinators a few years ago were turned away or attacked amid rumors both false and true. (False: that the vaccines were part of a Western plot against Islam. True: that the CIA used house-to-house vaccinators to hunt for Osama bin Laden.) And in parts of India, a measles-rubella vaccination campaign foundered earlier this year, after anonymous posts on social media claimed the vaccines were dangerous or even meant to sterilize the children of religious minorities.

Even in vaccine-receptive Bangladesh, Saha told me, he’s heard people wonder about the merits of adding PCVs to the already ambitious national inoculation effort. “I was on a talk show on the TV,” he said. “A banker’s wife, a powerful person, said, ‘Why are you talking about vaccines so much?’ ” Pneumonia and other pneumococcal infections are treatable with penicillin, the banker’s wife objected; Saha had just said so himself. “And my answer was: ‘Oh, madam. You want to wait until pneumonia develops, and  then  you should treat it?’ ”

Had she walked the Dhaka Shishu wards with Saha, this woman would have seen listless children lying under oxygen masks, the families gathered at their bedside or crowded somberly in the hallways, waiting for antibiotics to take hold. And those are the families who have made it to the hospital. “For the remotest places,” Saha said, “this”—the preemptive strike of a working vaccine—“is the only tool we have.” In the villages and poorest city slums, pneumococcus-sickened children still die by the thousands at home.

Sanjida Sahajahan made it to Dhaka Shishu, but doctors could do little for her. Saha carries special frustration about her case. His lab identified the pneumococcus that infected her brain: serotype 1, one of the varieties not targeted in the inaugural version of Prevnar. So even if Bangladesh had been able to afford the vaccine in 2005, it would not have protected Sanjida—because the manufacturer had launched a lifesaving product not meant for her part of the world.

“And it’s not only that child who is nonfunctional,” Saha said. “The mother is nonfunctional. She cannot go anywhere. Each and every member of that family is really half dead.”

He was quiet. “We gave them a wheelchair,” he said. “Was she using it?”

It was in pieces, I said, under the bed. Saha winced. But the two-month-old baby, Jannat—the parents showed us her health card too, I told him, and its new column with the check mark in place: pneumococcal conjugate vaccine. If the inoculation does its job, Jannat will be protected from the pathogen that devastated her sister, and when Saha thought about all this, the grief and hope all shoved together inside that very small home, he sighed. “We should still look at how many children we lost, and how many were disabled like this, in those 10 years while we were waiting for the vaccine,” he said. “But thank God we have got the vaccine now.”

The sprawling GSK campus in the Belgian city of Wavre is the biggest vaccine production facility in the world. The day I met Luc Debruyne, the company’s global vaccines president, I’d already been obliged twice to change clothes. Each vaccine’s biological and mixing work is hermetically contained inside its own separate building, and stepping into one of these dedicated structures requires a complete switch to clean-room suit, cleansed white shoes, and protective goggles and cap over eyeglasses and hair.

Those buildings, along with other parts of the company’s vaccine operation, represent an investment of more than five billion dollars over the past decade, Debruyne said. “It  is  a profitable business,” he added. “It needs to be profitable to be sustainable, to be able to offer massive volume and affordable pricing to the developing world.”

The children’s pneumococcal vaccine GSK delivers to Dhaka is a global production: Mixing starts at the company’s plant in Singapore, vaccine batches are sent to Belgium and then France for processing, and the vials are finally returned to Belgium for shipping. As I peered through those goggles at the great silvery machines and vats at Wavre, though, the product under preparation was another GSK offering—a vaccine against a pathogen called rotavirus, the leading cause of children’s diarrhea, which sickens millions every year. In the poorest countries of sub-Saharan Africa and South Asia, it kills by the hundreds of thousands. Many children in Dhaka Shishu are struggling to recover from it.

Bangladesh has Gavi approval to start receiving GSK’s rotavirus vaccine , probably sometime next year. After the negotiated discount and additional financial support, the government will pay about 50 cents for each two-dose course of a vaccine that currently costs an American physician $220. For an impoverished health system, that’s irresistible, but there’s a colossal catch. Gavi aid is supposed to be temporary—a means for poor countries to help more children grow up healthy, and in doing so help improve the countries’ own economies to the point where they can finance important vaccines on their own.

Once a recipient country rises above the world’s lowest per capita income levels, the Gavi subsidy is supposed to be phased out. “It’s called ‘transitioning,’ ” says Doctors Without Borders vaccine policy adviser Kate Elder. “But I’ve heard ministers of health call this being expelled.” Even though leaders of GSK and other major U.S. and European vaccine manufacturers have promised to maintain impoverished -country discounts, losing the subsidy still means a comparatively huge cost increase. In Bangladesh, for example, it could push the GSK pneumococcal vaccine cost from 60 cents to $9.15 per child.

That still looks like a bargain to an American doctor paying more than 50 times that much. But Doctors Without Borders and other critics argue that the prices big American and European drug companies charge for children’s vaccines are unacceptably high, even at a discount. A third of the world’s countries have not yet brought PCVs into their immunization programs; a key reason is long-term cost. From the drug companies, Elder says, “we get this a lot of the time: ‘Why aren’t you just celebrating the kids who do have access now?’ And we say, ‘Yes, but we want more.’ ”

One remedy may lie in emerging competition from outside the U.S. and Europe—from pharmaceutical companies in India, Brazil, Vietnam, Cuba, South Korea, and even Bangladesh, where a Dhaka enterprise now sells nearly a dozen kinds of vaccine, using ingredients shipped in from other countries. An enormous Indian manufacturer called the Serum Institute produces from scratch more than a billion doses a year of relatively inexpensive vaccines, shipping them throughout India as well as abroad. Disease experts at the Gates Foundation and PATH, a global health nonprofit also based in Seattle, are helping Serum develop its own children’s pneumococcal vaccine. Trials are underway in India and Africa, and that vaccine could be on the market by 2020.

Samir Saha is 62 now, with no imminent plans for retirement. It’s too soon to assess definitively the success of PCVs in Bangladesh, but the last time we walked through Dhaka Shishu together, he was upbeat. Only three pneumococcus patients were in the general ward that day, none appeared in grave danger, and one of Saha’s researchers was at a computer working on a bar graph that showed a tantalizing case drop for autumn 2016—one short bar, dwarfed by much taller ones from the six preceding autumns.

Saha pulled up a chair and looked closely at the graph. Let’s wait and see next year, he said. But he was smiling. “Good for the patients,” he said. “Less pneumonia in the hospital. Less death.” He waved his arm toward all the researchers bent over microscopes. “Jobless!” Saha joked, and his smile broadened. “All of them will be jobless!”

Originally published by National Geographic Magazine and natgeo.com in November 2017.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 26, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Hum Vaccin Immunother
  • v.16(8); 2020

Why vaccines matter: understanding the broader health, economic, and child development benefits of routine vaccination

Arindam nandi.

a Center for Disease Dynamics, Economics & Policy, Washington, DC, USA

b Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Associated Data

  • World Health Organization . World Health Organization: 10 facts on immunization ; 2018. [accessed 2019 April9]. https://www.who.int/features/factfiles/immunization/en/ .

The direct benefits of childhood vaccination in reducing the burden of disease morbidity and mortality in a cost-effective manner are well-established. By preventing episodes of vaccine-preventable diseases, vaccination can also help avert associated out-of-pocket medical expenses, healthcare provider costs, and losses in wages of patients and caregivers. Studies have associated vaccines positively with cognition and school attainment, suggesting benefits of long-term improved economic productivity. New evidence suggests that the measles vaccine may improve immunological memory and prevent co-infections, thereby forming a protective shield against other infections, and consequently improving health, cognition, schooling and productivity outcomes well into the adolescence and adulthood in low-income settings. Systematically documenting these broader health, economic, and child development benefits of vaccines is important from a policy perspective, not only in low and middle-income countries where the burden of vaccine-preventable diseases is high and public resources are constrained, but also in high-income settings where the emergence of vaccine hesitancy poses a threat to benefits gained from reducing vaccine-preventable diseases. In this paper, we provide a brief summary of the recent evidence on the benefits of vaccines, and discuss the policy implications of these findings.

Introduction

Childhood vaccines save an estimated 2–3 million lives worldwide every year, which has contributed substantially to the reduction in global infant mortality rate from 65 per 1,000 live births in 1990 to 29 in 2018. 1, 2 Vaccines are found to be the most cost-effective approach for reducing childhood disease burden, especially when compared with interventions such as clean water and improved sanitation which can also reduce disease transmission but require expensive and time-consuming infrastructural investment. 3 Cross-national policy efforts such as the World Health Organization’s (WHO) Expanded Programme on Immunization (EPI) of 1974, and the multi-agency Global Alliance for Vaccines and Immunization (Gavi), established in 1999, have supported several countries with research, logistical planning, supply chain management, and financing of national vaccination programs. In recent times, routine vaccination has been supplemented with additional efforts to optimize community coverage. An example is the government of India’s Mission Indradhanush campaign initiated in 2015, that resulted in an increase of full vaccination coverage in target districts by 10 percentage points in just six months. 4 As a result of these combined in-country and international initiatives, full vaccination rates of children in low-income countries have increased from under 50% to close to 80% during the past two decades. 5

With such improvements in vaccination rates and reduction in child mortality, future changes in the global child health policy can be envisaged in three broad areas. First, as vaccine coverage improves, and there is increasing protection of both vaccinated and unvaccinated populations through the phenomenon of community immunity, we are likely to see fewer vaccine-preventable diseases in the general population. For example, polio has been eliminated from almost all countries and is at the verge of complete global eradication. However, the growing recognition of the importance of health equity has shown that clusters of susceptible populations within vaccinated societies can preempt disease outbreaks, such as the reemergence of diphtheria infections in Bangladesh and India. 6 , 7 Second, the decreasing incidence of vaccine-preventable diseases has diminished the public’s memory of the devastation caused by the diseases, leading to a rise in vaccine hesitancy. Therefore, national programs will have to refocus on maintaining the momentum, although in a world with limited government resources, health policymakers may find it difficult to financially and operationally justify large vaccination programs. Third, the shifting focus from child mortality to morbidity will lead to a greater emphasis on children’s physical, cognitive, and socioemotional development as compared with survival. 8 , 9

Due to changing focus from child survival benefits of vaccines to child development benefits, along with greater reliance on multi-criteria decision-making tools, it is more important than ever before to quantify the broader social and individual benefits of vaccination. In this paper, we discuss evidence from a few key studies, and summarize the benefits of childhood vaccines beyond the intended reduction in disease burden and child mortality.

Economic, equity, and global health benefits of vaccines

Vaccines can have several economic benefits. 3 , 10 One of the most discernible benefits is averted medical expenditure. By preventing an episode of the disease through a vaccine, the economic costs of treatment, such as physician fees, drugs and hospitalization expenses, and associated travel costs and wage loss of caregivers could be averted. This is particularly important for low and middle-income countries (LMICs) where a large part of medical expenditure is out-of-pocket. A clear example is the situation in India, where 65% of health expenditure is private, with extreme costs in some cases, which thrusts 51 million people into poverty every year. 2 , 11 , 12 It is estimated that the measles, rotavirus, and pneumococcal conjugate vaccines could help avert $4.6 billion (2016 US$, adjusted for purchasing power parity) in out-of-pocket medical expenses in 41 Gavi-eligible LMICs during 2016–2030. 13 Vaccines could also reduce the number of people who fall into poverty due to a catastrophic medical expense which is defined as a large proportion (typically, more than 10% to 25%) of household income or expenditure. 12 , 14 - 20

The protection which vaccines provide against the financial risk from a large medical expense can be measured in additional ways. The so-called extended cost-effectiveness (ECEA) studies have estimated large money-metric value of insurance provided by vaccines. 13 , 14 , 16 , 19 The value of insurance is equivalent to risk premium, which is defined as the amount of money one would be willing to pay in order to avoid the financial uncertainty from a vaccine-preventable disease. 21 Paying for vaccines, in this context, is akin to paying for a health insurance premium.

Benefit-cost analysis (BCA) studies of vaccines consider a full range benefits as measured by gains in economic productivity. Several alternative BCA methods exist, including a human capital approach which uses the average annual economic contribution of workers, and a friction cost approach which considers productivity lost during the period when a job position remains unfilled due to sickness. 22 , 23 Mortality and morbidity risk reduction benefits of vaccines have also been measured in terms the value of statistical life year (VSLY). 24 , 25 VSLY is equivalent to the willingness to pay in order to avoid one disability adjusted life year (DALY) from the disease. 26 , 27 It is typically measured as a multiple (approximately 2–4 times) of the per capita national income of a country. 28 - 30 Newer studies such as those commissioned by the Copenhagen Consensus Center have considered a fixed value of either $1,000 or $5,000 per DALY across all countries and contexts. 29 - 31

One of the most comprehensive vaccine BCA studies published recently used the VSLY method and examined the economic benefits of 10 vaccines – for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae , and yellow fever – in 73 LMICs. 10 The authors considered averted medical expenses, transportation costs, and productivity gains in their analysis, and estimated that during 2001–2020, the vaccines together would provide a social and economic value of $820 billion (2010 US$). 10 During 2011–2020, the rate of return for investment on these vaccines was estimated to be up to 44 times of the initial cost. 32 Routine vaccination has a positive effect on social and health equity among populations. Infectious disease incidence and mortality are often associated with poverty, and exacerbated by lack of access to clean water, sanitation, and basic hygiene among the poor. Routine childhood vaccinations are, thus, estimated to avert the largest burden of diseases, associated medical expenses, and loss in economic productivity in the poorest segments of the society. 13 , 14 , 17 - 19 , 33 , 34 A recent study in 41 Gavi-eligible LMICs found that universal coverage of the measles, rotavirus, and pneumococcal conjugate vaccines would avert a total of 12.6 million cases of catastrophic health expenditure which might have otherwise propelled patients into poverty. 13 Of those, 75%, 40%, and 22% of cases respectively for the three diseases were from the poorest wealth quintile. 13

New research shows that vaccines can also tackle global health threats such as antimicrobial resistance (AMR). If left unchecked, AMR-related infections are estimated to result in as many as 10 million deaths per year worldwide by 2050, with an associated global economic cost of US$100 trillion. 35 Vaccines could prevent infections – either sensitive or resistant – and also reduce the use of antimicrobials, which in turn could slow the growth of AMR. 36 - 46

Child development benefits of vaccines

Persistent or recurrent infections in early life can lead to poor growth and stunting, which in turn can adversely affect adult health, cognitive capacity, and economic productivity. 47 - 49 The theoretical basis of the long-term benefits of vaccines is anchored in the widely accepted “fetal origins” hypothesis 50 , 51 which links conditions in utero and during early childhood with later life outcomes. 48 , 49 , 52 - 66 Malnutrition, infection, pregnancy and birth complications, and under-stimulation during the first 1000 days of life can have lasting impact on health, cognitive, and economic outcomes well into the old age. In addition to appropriate nutrition and nurturing, health interventions such as routine vaccinations could reduce infectious disease burden in early childhood and thereby help break the intergenerational cycle of poverty, poor health, and low income.

There is a small but growing literature on the potential child development benefits of routine vaccines. The measles vaccine is especially important in this context as episodes of measles could damage protective immune memory for a period of 2–3 years, increasing susceptibility to future measles and non-measles infections. 67 - 69 Using sophisticated techniques, scientists have showed that measles infection in children wipes out preexisting antibodies to different pathogens in the months after the infectious episode, leaving them vulnerable to multiple other infections and possible death. 70 A recent longitudinal study of approximately 2,000 children each in Ethiopia, India, and Vietnam has linked measles vaccination at ages 6–18 months of life with 0.1–0.2 higher anthropometric z-scores, 1.7–4.5 percentage points higher scores on standardized cognition tests, and 0.2–0.3 additional schooling grades at ages 7–8 and 11–12 years. 71 The vaccine has also been associated with 0.2 more schooling grade attainment among South African children and 7.4% higher school enrollment rate among children in Bangladesh. 72 , 73

Similar growth, cognition, and schooling benefits have been observed among Haemophilus influenzae type B (Hib) vaccinated children in India, 74 , 75 and fully vaccinated children in the Philippines. 76 Another study found that exposure to tetanus vaccination in utero increased schooling attainment by 0.3 years for some children in Bangladesh. 77 At the aggregate level, India’s national vaccination program has been associated with 0.3–0.5 higher height-for-age and weight-for-age z-scores at ages 0–4 years, 78 and 0.2 additional schooling grades among adults. 79

Concluding remarks

Childhood vaccines have numerous positive effects beyond disease prevention. The concept of broader benefits of vaccines which would include cognition, schooling, economic productivity, fertility, and related outcomes was first proposed by a key 2005 article. 80 During the present decade, researchers have utilized and expanded this framework across several dimensions and country contexts. 76 , 77 , 81 - 85

A new online database called the Value of Immunization Compendium Evidence (VoICE), created and maintained by the International Vaccine Access Center at the Johns Hopkins University, Bloomberg School of Public Health, now tracks research on the broader benefits of vaccines on health, educational, economic, and equity outcomes worldwide. 86 The Immunization Economics community of research and practice compiles similar and related information. 87 Finally, the World Health Organization is developing an approach for systematically measuring the broader benefits, known as the Full Public Health Value Propositions (FPHVP), in the context of LMICs. 88 , 89 Regardless of income level, countries around the world are facing a crises in the acceptance of the societal benefits of routine vaccines. Going forward, we hope that these new frameworks will be widely used for child health policy globally.

Funding Statement

This work was supported by the Value of Vaccination Research Network (VoVRN) through a grant from the Bill & Melinda Gates Foundation (Grant OPP1158136). The content is solely the responsibility of the authors and does not necessarily reflect the views of the VoVRN or the foundation.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Vaccines Are Important—But What Are They and How Do They Work?

BY JEREMY LEDGER January 21, 2022

illustration of doctors with a giant vaccine syringe heading toward a coronavirus

[Originally published: Oct. 15, 2020; Updated: Jan. 20, 2022]

To say that the COVID-19 pandemic has disrupted our lives would be an understatement. Over the past two years, many of us have spent much of our time hunkered down in our homes, avoiding crowds, wearing masks, social distancing, and learning and working from home. During the first year of the pandemic these were our only tools for combating the coronavirus .

But scientists were busy developing COVID-19 vaccines at record pace. The Food and Drug Administration (FDA) was prepared to approve any vaccines that demonstrated at least 50% efficacy against the coronavirus.

So, it was welcome news when the COVID-19 vaccines that were authorized for emergency use by the FDA just over a year ago exceeded all expectations. The three vaccines in use in the U.S. were deemed both safe and highly effective. And over the past year, hundreds of millions of doses have been dispensed to adults, teens, and most recently, children—and that’s just in the U.S.

For many, the vaccine brought with it a crash course on a host of terms many haven’t seen since high school—or ever—including the immune system, antibodies, and asymptomatic infection, to name a few. Cable news and newspapers began to regularly reference vaccine “platforms” such as mRNA vaccine technology and viral vectors. Then there is the ongoing discussion of vaccine protection against infection versus protection against severe disease. All of this may be confusing to those of us who are simply trying to put one foot in front of the other during this pandemic. And any confusion surrounding COVID-19 vaccines may be compounded by the uptick in reporting about them—the trials, their efficacy, and their safety.

With this in mind, Yale Medicine offers this primer on vaccine basics—how they work, their different platforms, and the approval process—and what that means for a COVID-19 vaccine.

So, how do vaccines actually work?

Basically, vaccines train the immune system to recognize dangerous pathogens, like SARS-CoV-2, preparing the body to fight an infection without having to get sick.

“The immune system is like an orchestra. It has so many different players and instruments that need to work together to defend the body against invading pathogens,” says Akiko Iwasaki, PhD , Waldemar Von Zedtwitz Professor of Immunobiology and Molecular, Cellular, and Developmental Biology at Yale School of Medicine. “The vaccine serves as the conductor to orchestrate the defense system.”

How does this happen? When a pathogen infects the body, the immune system dispatches an army of different cells to clear the infection from the body. Two types of immune cells that make up this army—B cells and T cells—are particularly important for the development of vaccines.

What are B cells and T cells?

B cells and T cells move through the body, constantly on the lookout for pathogens. When they encounter one, they attach themselves to it via a structure on the pathogen’s surface called an antigen. When B cells bind to antigens, they crank out thousands of antibodies, which in turn bind to other pathogens circulating in the blood and lymphatic fluid. These antibodies send chemical signals to other immune cells to come and help destroy the pathogen.

But what happens if a virus makes it past the antibodies and infects the cells? This is where T cells come in: A special type of T cell (called a “killer T cell”) monitors the body’s cells. Should these killer T cells detect an infected cell, they kill it in order to prevent the infection from spreading to other cells.

After ridding the body of a pathogen, some B and T cells live on as memory cells. These memory cells can live for years—even decades—preserving their knowledge of these pathogens and how to defeat them. If the immune system sees them again, the memory cells will recognize them and launch a swift and powerful immune response that kills the pathogens before they can cause sickness.

If you had chickenpox as a child, for example, your immune system will have developed an immunological memory against the virus that caused it. This memory largely protects you from getting chickenpox a second time. Similarly, studies have found that people who’ve recovered from COVID-19 develop memory B and T cells against the coronavirus, meaning they have some level of long-term protection against it. But unlike with chickenpox, scientists don’t yet know how long this immunological memory lasts with COVID-19 or how well it protects against reinfection.

Studies suggest that COVID-19 vaccines also provoke a robust immune response. Researchers have found that vaccines not only stimulate the production of antibodies, but that they should also provide some level of long-term protection against COVID-19, though for how long this protection will last remains unknown.

Because this is complicated, it’s worth reiterating: It is the ability of memory cells to remember pathogens that confers immunity and protection against viral, bacterial, and other pathogens they have previously confronted. Vaccines work because of this immunological memory.

But instead of exposing people to a dangerous pathogen that causes severe disease, a vaccine introduces the immune system to the pathogen in a way that does not make them ill, but which nevertheless prompts the immune cells to respond and create antibodies and memory cells.

In this way, vaccines against SARS-CoV-2 work by introducing your immune system to the virus—or the virus’s antigens—in a manner that does not cause COVID-19, but which still stimulates an immune response and the formation of an immunological memory.

How does a vaccine introduce a pathogen without making you sick?

Scientists have developed several ways to introduce a pathogen to the immune system without risking disease. One method—what’s known as an “inactivated vaccine”—exposes the bacteria or virus to certain chemicals, radiation, or heat to “kill” it, so that it is no longer able to infect human cells; this deactivated pathogen is what’s in the vaccine. Alternatively, scientists might weaken a pathogen so that it is still able to infect cells but without causing sickness; these are known as live or attenuated vaccines.

Both methods have been used safely and effectively for several decades to protect people against a variety of diseases that were once common. Examples include the Salk polio vaccine, as well as vaccines against measles , mumps, and rubella, among others.

Both inactivated and live attenuated vaccines for COVID-19 have been developed. Sinovac Biotech, a company in China, produced an inactivated vaccine that has been approved there and is authorized for use in several other countries. Sinopharm, another Chinese company, also developed an inactivated vaccine, as has Bharat Biotech, a company in India.  Codagenix, a company in New York, developed COVI-VAC, a live attenuated vaccine that is still in clinical trials. One downside to inactivated and live attenuated vaccines is that they require considerable quantities of virus to be produced, which is a slow process.

New vaccine methods

Since the start of the pandemic, pharmaceutical companies and research laboratories have explored other ways to develop vaccines against COVID-19, beyond the methods discussed above.

For instance, several groups are working on viral vector vaccines, in which scientists genetically engineer an innocuous, or harmless, virus so that it carries genetic material that codes for the spike protein of SARS-CoV-2, the structure the virus uses to attach to and infect cells and which also serves as an antigen.

The genetically engineered virus acts as a Trojan Horse. When introduced into the body (via an injection, for instance), the virus infects cells, but in so doing, it covertly delivers the genetic material for the spike protein—spurring the body’s own cells to produce copies of it. Recognizing these spike proteins as outside invaders, the immune system mounts a defense against them, and, in the process, creates memory cells that should serve to protect against the coronavirus.

Some viral vector vaccines use viruses that have been modified so that they cannot replicate and consequently cannot cause illness, while others use viruses that cannot harm people. The Johnson & Johnson, University of Oxford-AstraZeneca team, CanSino, and several other companies have developed viral vector vaccines against COVID-19.

Still other companies like Moderna, Pfizer, and Inovio, among others, have developed RNA and DNA vaccines. Like viral vector vaccines, RNA and DNA vaccines induce the body’s cells to generate copies of antigen proteins (usually the spike protein), only they do not use a viral vector to deliver genetic material. Instead, the genetic material, in the form of either DNA or messenger RNA, is introduced into the body directly.

The genetic material enters cells and instructs them to produce copies of the viral antigen. This stimulates an immune response and ultimately development of memory cells that can recognize and respond to the SARS-CoV-2 virus. DNA and RNA vaccines can be mass produced quickly and at reasonable cost.

How are vaccines approved?

Before a vaccine can be used on the general population, it must first be carefully tested and vetted in an approval process intended to ensure that it is both safe and effective.

Here in the United States, this process begins with what’s called “preclinical research.” This is when the vaccine is first tested on cell cultures and animals—not humans—to determine whether it safely produces the desired immune response.

If a vaccine passes the preclinical stage, it begins a three-phase trial.

  • Phase 1: During Phase 1, the vaccine is given to a small group of healthy volunteers (between 10 and 100). This phase of the trial is focused on evaluating whether the vaccine is safe, though researchers also study its efficacy by determining whether it triggers an immune response.
  • Phase 2: Vaccines that prove safe in Phase 1 move on to Phase 2. Here, hundreds of volunteers receive the vaccine. During Phase 2, researchers continue to assess the safety of the vaccine, though they also try to understand how the immune system responds to different doses of it.
  • Phase 3: Phase 3 occurs after a vaccine successfully passes Phase 2. During this phase, thousands or even tens of thousands of volunteers receive either the vaccine or a placebo, but neither the researchers nor the volunteers know who gets which treatment. 

The volunteers then live their lives as they normally would. Amid COVID-19, this means they are encouraged to follow current public health infection prevention guidelines. Researchers will track how many volunteers get COVID-19 and, to measure the effectiveness of the vaccines, follow them to learn whether those who received the vaccine were infected at lower rates than those who got the placebo. Researchers continue to monitor the vaccine’s safety throughout the trial.

If, after all three phases, the vaccine is found to be safe and effective—if, in the example of COVID-19, it protects against infection or reduces severity of illness—then it is submitted to the FDA for approval. A multidisciplinary team of scientists reviews the data collected throughout the trial. And, if the data look good, the FDA will license the vaccine and the manufacturing process begins in order to produce mass quantities, so the general population can be vaccinated.  

Is safety monitored after the vaccine is approved?

Even after the approval of a vaccine, the FDA and Centers for Disease Control and Prevention (CDC) continue to monitor its safety. Anyone involved in the use or distribution of vaccines including patients, pharmacists, health care providers, and vaccine manufacturers can report side effects through the Vaccine Adverse Event Reporting System (VAERS).

In all, this process of vaccine development, from preclinical research to licensure and vaccine production, usually takes a decade or longer. The fastest vaccine ever successfully developed—a mumps vaccine produced by Merck in the 1960s—still required four years. Several vaccines against COVID-19, however, were developed and completed clinical trials in record time—in some cases, in less than a year. But experts like Iwasaki do not see this as cause for alarm. “The vaccine candidates underwent rigorous testing before being authorized by the FDA,” she says. “Even though the timeline was sped up to develop COVID-19 vaccines, the evaluation of safety and efficacy was not compromised.”

Clinical trials found the Pfizer, Moderna, and Johnson & Johnson vaccines (all currently authorized for use in the U.S.) both safe and effective against COVID-19, although the CDC has expressed a preference for mRNA vaccines. The CDC and health agencies around the world continue to monitor their safety.

View part two of our series on vaccines —a Q & A with a Yale public health expert on the safety and efficacy of COVID-19 vaccines currently in development.

[ Visit the Yale Medicine Vaccine Content Center for more information. ]

More news from Yale Medicine

doctors and nurses huddled together during the COVID-19 pandemic

  • Fact sheets
  • Facts in pictures
  • Publications
  • Questions and answers
  • Tools and toolkits
  • HIV and AIDS
  • Hypertension
  • Mental disorders
  • Top 10 causes of death
  • All countries
  • Eastern Mediterranean
  • South-East Asia
  • Western Pacific
  • Data by country
  • Country presence 
  • Country strengthening 
  • Country cooperation strategies 
  • News releases
  • Feature stories
  • Press conferences
  • Commentaries
  • Photo library
  • Afghanistan
  • Cholera 
  • Coronavirus disease (COVID-19)
  • Greater Horn of Africa
  • Israel and occupied Palestinian territory
  • Disease Outbreak News
  • Situation reports
  • Weekly Epidemiological Record
  • Surveillance
  • Health emergency appeal
  • International Health Regulations
  • Independent Oversight and Advisory Committee
  • Classifications
  • Data collections
  • Global Health Estimates
  • Mortality Database
  • Sustainable Development Goals
  • Health Inequality Monitor
  • Global Progress
  • Data collection tools
  • Global Health Observatory
  • Insights and visualizations
  • COVID excess deaths
  • World Health Statistics
  • Partnerships
  • Committees and advisory groups
  • Collaborating centres
  • Technical teams
  • Organizational structure
  • Initiatives
  • General Programme of Work
  • WHO Academy
  • Investment in WHO
  • WHO Foundation
  • External audit
  • Financial statements
  • Internal audit and investigations 
  • Programme Budget
  • Results reports
  • Governing bodies
  • World Health Assembly
  • Executive Board
  • Member States Portal
  • Feature stories /

The vaccines success story gives us hope for the future

As the world waits for a vaccine to defeat the covid-19 pandemic, we look back to all that vaccines have achieved for humanity..

The World Health Organization (WHO), working in partnership with both public and private sectors, has a proud history of vaccinology.  

By assessing vaccines for global supply, WHO’s groundbreaking Prequalification programme has made possible the deployment of quality-assured, safe and effective vaccines to dozens of countries across the world. This programme gives countries the security and confidence to know that vaccines being purchased meet WHO standards for safety, effectiveness and quality.

The Expanded Programme on Immunization (EPI), created by WHO in the 1970s, has, with the help of UNICEF, Gavi, the Vaccine Alliance, and others, brought lifesaving vaccines to hundreds of millions of children around the world. The immunisation programme is found in every country on the globe.  It has the farthest reach and deepest impact of any public health programme. WHO staff have supported governments and health professionals to deliver vaccines where they are needed on the ground. Its success is measured in millions of lives saved each year.  Through vaccination, smallpox has been eradicated and polio is on the verge of being defeated

On constant alert, every year, WHO studies influenza trends, to work out which strains are emerging and should be included in the next season’s flu vaccine. And it continually monitors potential signals of pandemic threat.

WHO estimates that in 2018 (the latest year for which estimates are available), 25,000 newborns died from neonatal tetanus, an 88% reduction the figure of 200,000 in 2000. 

Global HPV vaccine coverage is increasing. HPV vaccines had been introduced in 106 countries by the end of 2019, representing a third of the global population of girls.

Today, 86% of the world’s children receive essential, lifesaving vaccines, increasing from around 20% back in 1980. This protects them and their communities against a range of infectious diseases, including measles, diphtheria, tetanus, pertussis (whooping cough), hepatitis B and polio. The number of children paralysed by polio has been reduced by 99.9 percent worldwide over the last three decades. 

This level of protection comes through a strong global effort to increase vaccine access and affordability, with support in recent decades from new partnerships like Gavi, the Vaccine Alliance - focussing on expanding vaccine availability in the poorest countries - and the Measles & Rubella Initiative.

importance of vaccination essay brainly

Credit: WHO / Mark Nieuwenhof 

Innovative partnerships have also seen WHO help lead major cholera and yellow fever vaccination campaigns, and have also produced effective vaccines against meningitis and pneumonia, diarrhoea, and the world’s first-ever malaria vaccine currently being piloted in Ghana, Kenya and Malawi.

We have known about Ebola since the 1970s, but the disease hit the headlines in 2014–2016 when an epidemic in West Africa killed more than 11 000 people. This epidemic triggered the first human trials of a vaccine against the disease and prompted changes in the way the world responds to outbreaks

To tackle the threat of Ebola, one of the biggest priorities was to fund vaccine discovery, fast-track clinical trials, hasten regulatory approvals and enable manufacturers to produce and roll out an Ebola vaccine. From early testing to trials of the rVSV-ZEBOV Ebola vaccine in Guinea in 2016 took the sum of ten months, a speed unprecedented at the time.

The Government of the Democratic Republic of the Congo (DRC) declared a new outbreak of Ebola virus disease (EVD) in Bikoro in Equateur Province on 8 May 2018. Vaccination began on 21 May.

“I just spent the day out with the vaccination teams in the community, and for the first time in my experience, I saw hope in the face of Ebola and not terror,” said WHO’s Dr Mike Ryan.

When Ebola hit eastern DRCin August 2018 , the vaccine was used just days after the declaration of the outbreak. More than 300 000 people were vaccinated from August 2018 to March 2020, which heped to save lives and slowed the spread of Ebola.

importance of vaccination essay brainly

Credit : WHO / Lindsay Mackenzie 

As the rVSV-ZEBOV vaccine was not licensed, it was used under “compassionate use” as part of ongoing research studies. Those who volunteered to take part in the DRC study provided consent, and safety was monitored when they were followed up after vaccination. The results from the DRC vaccine studies confirmed that the vaccine is effective in preventing Ebola. The vaccine was licensed in the United States and Europe in late 2019. Earlier this year after WHO prequalified the vaccine, it was licensed in DRC and five other African countries.

Meningitis vaccine for Africa

Africa has also benefited from another innovative vaccine development. For more than 100 years, countries in sub-Saharan Africa were ravaged by widespread meningitis epidemics. During a severe epidemic 1996-1997 more than 250 000 cases and 2 ,000 deaths were reported across what is known as the “meningitis belt”, stretching from Senegal in the west, to Ethiopia in the east.

With more than 450 million people at risk from meningococcal A disease, African ministers of health challenged public health experts and scientists to seek a new approach.

WHO, the US Centers for Disease Control and Prevention (CDC) and PATH recommended the development of a conjugate meningococcal vaccine for Africa that could meaningfully reduce the disease burden and eventually overcome the epidemics that came in waves. Clinical trials began in 2005 and were carried out in the Gambia, Ghana, India, Mali and Senegal. In June 2010, the vaccine received WHO prequalification. The first countries to introduce the vaccine – Burkina Faso, Mali and Niger – scaled-up activities relating to licensure, vaccine management, campaign planning and monitoring and management of adverse events following immunisation.

The innovative and affordable vaccine was introduced in late 2010 and more than 300 million people living in the meningitis belt countries have since been vaccinated resulting in a dramatic decline, all but ridding these countries of this major cause of deadly epidemics.

Looking forward

The Ebola and meningitis vaccines are two of the most exciting developments in global public health in recent history. So too is the evolution of the routine immunization programmes that have so successfully halted the measles and polio outbreaks that once ravaged communities, killing and maiming young children. Pneumococcal and rotavirus vaccines have been successful against some of the most common causes of pneumonia and diarrhoeal deaths. Innovative financing expedited the introduction of the pneumococcal vaccine, enabling it to be launched in 2011, in a world-first, in rich and poor countries simultaneously.

importance of vaccination essay brainly

Immunisation saves millions of lives every year. We now have vaccines to prevent and control 25 infections, helping people of all ages live longer, healthier lives. The wealth of experience accrued by WHO and its partners over decades is now being deployed to accelerate the development and distribution of vaccines against COVID-19, so that when we have a safe and effective vaccine, no one will be left behind. Vaccines remain the safest, most cost-effective protection against disease and will provide a powerful tool to address the COVID-19 pandemic.

A new meningitis vaccine for Africa

Vaccines and the power to protect

Two vaccines to protect pregnant women and their babies in Peru’s Amazon region

IMAGES

  1. ≫ Vaccinations: Are There any Real Benefits? Free Essay Sample on

    importance of vaccination essay brainly

  2. 📗 Free Essay on the Importance of Vaccination

    importance of vaccination essay brainly

  3. ≫ The Anti-Vaxxer Epidemic: Why Vaccination Should Be Mandatory Free

    importance of vaccination essay brainly

  4. What is the importance of vaccination

    importance of vaccination essay brainly

  5. The Importance of Vaccinations

    importance of vaccination essay brainly

  6. Vaccines

    importance of vaccination essay brainly

VIDEO

  1. The importance of vaccination

  2. Importance Of Vaccination

  3. Importance of vaccinating children

  4. Write English Paragraph on Vaccines How to write English essay on Vaccines |Simple English paragraph

  5. Why Vaccinate? What role do vaccines play

  6. Importance Of Vaccination Of Pets

COMMENTS

  1. Why it’s safe and important to get the COVID-19 vaccine

    Based on what has been proved about vaccines for other diseases, the COVID-19 vaccine may help keep you from getting seriously ill, even if you do get the virus. Getting vaccinated also may protect people around you — particularly those at greater risk for severe illness from COVID-19.

  2. Vaccines and immunization: What is vaccination?

    Vaccination is a simple, safe, and effective way of protecting you against harmful diseases, before you come into contact with them. It uses your body’s natural defenses to build resistance to specific infections and makes your immune system stronger.

  3. Importance Of Vaccination Essay - 100, 200, 500 Words - Schools

    100 Words Essay On Importance Of Vaccination . Vaccinations are a critical aspect of modern medicine, designed to protect individuals from harmful illnesses. They work by introducing a small, harmless dose of a microbe or its components, such as a protein or toxin, into the body.

  4. The Importance of Vaccinations - familydoctor.org

    Vaccines are especially important for at-risk populations such as young children and older adults. The AAFP offers vaccination recommendations, immunization schedules, and information on disease-specific vaccines. Being up to date on vaccines is especially important as children head back to school.

  5. 10 Reasons to Get Vaccinated - NFID

    Like eating healthy foods, exercising, and getting regular check-ups, vaccines can play a vital role in keeping you healthy. Vaccines are one of the safest preventive care measures available. Vaccination can mean the difference between life and death. Vaccine-preventable infections can be deadly.

  6. The Importance of Vaccination in the Context of the COVID-19 ...

    The acquisition of effective vaccines, the intense search for antiviral drugs alternatives, and health-surveillance measures have resulted in a reduction in severe cases and fatalities. In parallel, researchers discuss the impact of the COVID-19 variants on natural immunization [ 211 ].

  7. Here’s Why Vaccines Are so Crucial

    Here’s Why Vaccines Are so Crucial. If children in poor countries got the shots that rich countries take for granted, hundreds of thousands of young lives could be saved. Grades. 3 - 12. Subjects. Biology, Health. Photograph. Bangladesh polio vaccine.

  8. Why vaccines matter: understanding the broader health ...

    In this paper, we provide a brief summary of the recent evidence on the benefits of vaccines, and discuss the policy implications of these findings. KEYWORDS: Routine immunization, child development, broader benefits of vaccines, measles vaccine, cost-effectiveness, benefit-cost. Go to:

  9. Vaccines Are Important—But What Are They and How Do They Work?

    Basically, vaccines train the immune system to recognize dangerous pathogens, like SARS-CoV-2, preparing the body to fight an infection without having to get sick. “The immune system is like an orchestra.

  10. The vaccines success story gives us hope for the future

    Vaccines and the power to protect. Two vaccines to protect pregnant women and their babies in Peru’s Amazon region. As the world waits for a vaccine to defeat the COVID-19 pandemic, we look back to all that vaccines have achieved for humanity.