• Math Article

Null Hypothesis

In mathematics, Statistics deals with the study of research and surveys on the numerical data. For taking surveys, we have to define the hypothesis. Generally, there are two types of hypothesis. One is a null hypothesis, and another is an alternative hypothesis .

In probability and statistics, the null hypothesis is a comprehensive statement or default status that there is zero happening or nothing happening. For example, there is no connection among groups or no association between two measured events. It is generally assumed here that the hypothesis is true until any other proof has been brought into the light to deny the hypothesis. Let us learn more here with definition, symbol, principle, types and example, in this article.

Table of contents:

  • Comparison with Alternative Hypothesis

Null Hypothesis Definition

The null hypothesis is a kind of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data. This hypothesis is either rejected or not rejected based on the viability of the given population or sample . In other words, the null hypothesis is a hypothesis in which the sample observations results from the chance. It is said to be a statement in which the surveyors wants to examine the data. It is denoted by H 0 .

Null Hypothesis Symbol

In statistics, the null hypothesis is usually denoted by letter H with subscript ‘0’ (zero), such that H 0 . It is pronounced as H-null or H-zero or H-nought. At the same time, the alternative hypothesis expresses the observations determined by the non-random cause. It is represented by H 1 or H a .

Null Hypothesis Principle

The principle followed for null hypothesis testing is, collecting the data and determining the chances of a given set of data during the study on some random sample, assuming that the null hypothesis is true. In case if the given data does not face the expected null hypothesis, then the outcome will be quite weaker, and they conclude by saying that the given set of data does not provide strong evidence against the null hypothesis because of insufficient evidence. Finally, the researchers tend to reject that.

Null Hypothesis Formula

Here, the hypothesis test formulas are given below for reference.

The formula for the null hypothesis is:

H 0 :  p = p 0

The formula for the alternative hypothesis is:

H a = p >p 0 , < p 0 ≠ p 0

The formula for the test static is:

Remember that,  p 0  is the null hypothesis and p – hat is the sample proportion.

Also, read:

Types of Null Hypothesis

There are different types of hypothesis. They are:

Simple Hypothesis

It completely specifies the population distribution. In this method, the sampling distribution is the function of the sample size.

Composite Hypothesis

The composite hypothesis is one that does not completely specify the population distribution.

Exact Hypothesis

Exact hypothesis defines the exact value of the parameter. For example μ= 50

Inexact Hypothesis

This type of hypothesis does not define the exact value of the parameter. But it denotes a specific range or interval. For example 45< μ <60

Null Hypothesis Rejection

Sometimes the null hypothesis is rejected too. If this hypothesis is rejected means, that research could be invalid. Many researchers will neglect this hypothesis as it is merely opposite to the alternate hypothesis. It is a better practice to create a hypothesis and test it. The goal of researchers is not to reject the hypothesis. But it is evident that a perfect statistical model is always associated with the failure to reject the null hypothesis.

How do you Find the Null Hypothesis?

The null hypothesis says there is no correlation between the measured event (the dependent variable) and the independent variable. We don’t have to believe that the null hypothesis is true to test it. On the contrast, you will possibly assume that there is a connection between a set of variables ( dependent and independent).

When is Null Hypothesis Rejected?

The null hypothesis is rejected using the P-value approach. If the P-value is less than or equal to the α, there should be a rejection of the null hypothesis in favour of the alternate hypothesis. In case, if P-value is greater than α, the null hypothesis is not rejected.

Null Hypothesis and Alternative Hypothesis

Now, let us discuss the difference between the null hypothesis and the alternative hypothesis.

Null Hypothesis Examples

Here, some of the examples of the null hypothesis are given below. Go through the below ones to understand the concept of the null hypothesis in a better way.

If a medicine reduces the risk of cardiac stroke, then the null hypothesis should be “the medicine does not reduce the chance of cardiac stroke”. This testing can be performed by the administration of a drug to a certain group of people in a controlled way. If the survey shows that there is a significant change in the people, then the hypothesis is rejected.

Few more examples are:

1). Are there is 100% chance of getting affected by dengue?

Ans: There could be chances of getting affected by dengue but not 100%.

2). Do teenagers are using mobile phones more than grown-ups to access the internet?

Ans: Age has no limit on using mobile phones to access the internet.

3). Does having apple daily will not cause fever?

Ans: Having apple daily does not assure of not having fever, but increases the immunity to fight against such diseases.

4). Do the children more good in doing mathematical calculations than grown-ups?

Ans: Age has no effect on Mathematical skills.

In many common applications, the choice of the null hypothesis is not automated, but the testing and calculations may be automated. Also, the choice of the null hypothesis is completely based on previous experiences and inconsistent advice. The choice can be more complicated and based on the variety of applications and the diversity of the objectives. 

The main limitation for the choice of the null hypothesis is that the hypothesis suggested by the data is based on the reasoning which proves nothing. It means that if some hypothesis provides a summary of the data set, then there would be no value in the testing of the hypothesis on the particular set of data. 

Frequently Asked Questions on Null Hypothesis

What is meant by the null hypothesis.

In Statistics, a null hypothesis is a type of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data.

What are the benefits of hypothesis testing?

Hypothesis testing is defined as a form of inferential statistics, which allows making conclusions from the entire population based on the sample representative.

When a null hypothesis is accepted and rejected?

The null hypothesis is either accepted or rejected in terms of the given data. If P-value is less than α, then the null hypothesis is rejected in favor of the alternative hypothesis, and if the P-value is greater than α, then the null hypothesis is accepted in favor of the alternative hypothesis.

Why is the null hypothesis important?

The importance of the null hypothesis is that it provides an approximate description of the phenomena of the given data. It allows the investigators to directly test the relational statement in a research study.

How to accept or reject the null hypothesis in the chi-square test?

If the result of the chi-square test is bigger than the critical value in the table, then the data does not fit the model, which represents the rejection of the null hypothesis.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Maths related queries and study materials

Your result is as below

Request OTP on Voice Call

null hypothesis symbol copy paste

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes
  • Greater Than and Less Than Symbol: Meaning, Examples and Tricks
  • Numerator in Mathematics
  • Rational and Irrational Numbers
  • Expanded Form
  • Perfect Cubes - Definition, List, Chart and Examples
  • Linear Algebra Symbols
  • Divisibility Rule of 11
  • Perfect Numbers
  • Denominator in Maths
  • Additive Inverse and Multiplicative Inverse
  • Measurement
  • Predecessor and Successor
  • Binary Multiplication
  • Area and Perimeter of Shapes | Formula and Examples
  • Probability and Statistics
  • Number Symbols
  • Square Root of 4
  • Factors of 30
  • Binary Division

Null Hypothesis

Null Hypothesis , often denoted as H 0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. It serves as a baseline assumption, positing no observed change or effect occurring. The null is t he truth or falsity of an idea in analysis.

In this article, we will discuss the null hypothesis in detail, along with some solved examples and questions on the null hypothesis.

Table of Content

  • What Is a Null Hypothesis?

Symbol of Null Hypothesis

Formula of null hypothesis, types of null hypothesis, principle of null hypothesis, how do you find null hypothesis, what is a null hypothesis.

Null Hypothesis in statistical analysis suggests the absence of statistical significance within a specific set of observed data. Hypothesis testing, using sample data, evaluates the validity of this hypothesis. Commonly denoted as H 0 or simply “null,” it plays an important role in quantitative analysis, examining theories related to markets, investment strategies, or economies to determine their validity.

Definition of Null Hypothesis

Null Hypothesis represent a default position, often suggesting no effect or difference, against which researchers compare their experimental results. The Null Hypothesis, often denoted as H 0 , asserts a default assumption in statistical analysis. It posits no significant difference or effect, serving as a baseline for comparison in hypothesis testing.

Null Hypothesis is represented as H 0 , the Null Hypothesis symbolizes the absence of a measurable effect or difference in the variables under examination.

Certainly, a simple example would be asserting that the mean score of a group is equal to a specified value like stating that the average IQ of a population is 100.

The Null Hypothesis is typically formulated as a statement of equality or absence of a specific parameter in the population being studied. It provides a clear and testable prediction for comparison with the alternative hypothesis. The formulation of the Null Hypothesis typically follows a concise structure, stating the equality or absence of a specific parameter in the population.

Mean Comparison (Two-sample t-test)

H 0 : μ 1 = μ 2

This asserts that there is no significant difference between the means of two populations or groups.

Proportion Comparison

H 0 : p 1 − p 2 = 0

This suggests no significant difference in proportions between two populations or conditions.

Equality in Variance (F-test in ANOVA)

H 0 : σ 1 = σ 2

This states that there’s no significant difference in variances between groups or populations.

Independence (Chi-square Test of Independence):

H 0 : Variables are independent

This asserts that there’s no association or relationship between categorical variables.

Null Hypotheses vary including simple and composite forms, each tailored to the complexity of the research question. Understanding these types is pivotal for effective hypothesis testing.

Equality Null Hypothesis (Simple Null Hypothesis)

The Equality Null Hypothesis, also known as the Simple Null Hypothesis, is a fundamental concept in statistical hypothesis testing that assumes no difference, effect or relationship between groups, conditions or populations being compared.

Non-Inferiority Null Hypothesis

In some studies, the focus might be on demonstrating that a new treatment or method is not significantly worse than the standard or existing one.

Superiority Null Hypothesis

The concept of a superiority null hypothesis comes into play when a study aims to demonstrate that a new treatment, method, or intervention is significantly better than an existing or standard one.

Independence Null Hypothesis

In certain statistical tests, such as chi-square tests for independence, the null hypothesis assumes no association or independence between categorical variables.

Homogeneity Null Hypothesis

In tests like ANOVA (Analysis of Variance), the null hypothesis suggests that there’s no difference in population means across different groups.

Examples of Null Hypothesis

  • Medicine: Null Hypothesis: “No significant difference exists in blood pressure levels between patients given the experimental drug versus those given a placebo.”
  • Education: Null Hypothesis: “There’s no significant variation in test scores between students using a new teaching method and those using traditional teaching.”
  • Economics: Null Hypothesis: “There’s no significant change in consumer spending pre- and post-implementation of a new taxation policy.”
  • Environmental Science: Null Hypothesis: “There’s no substantial difference in pollution levels before and after a water treatment plant’s establishment.”

The principle of the null hypothesis is a fundamental concept in statistical hypothesis testing. It involves making an assumption about the population parameter or the absence of an effect or relationship between variables.

In essence, the null hypothesis (H 0 ) proposes that there is no significant difference, effect, or relationship between variables. It serves as a starting point or a default assumption that there is no real change, no effect or no difference between groups or conditions.

\alpha

Null Hypothesis Rejection

Rejecting the Null Hypothesis occurs when statistical evidence suggests a significant departure from the assumed baseline. It implies that there is enough evidence to support the alternative hypothesis, indicating a meaningful effect or difference. Null Hypothesis rejection occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

Identifying the Null Hypothesis involves defining the status quotient, asserting no effect and formulating a statement suitable for statistical analysis.

When is Null Hypothesis Rejected?

The Null Hypothesis is rejected when statistical tests indicate a significant departure from the expected outcome, leading to the consideration of alternative hypotheses. It occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

Null Hypothesis and Alternative Hypothesis

In the realm of hypothesis testing, the null hypothesis (H 0 ) and alternative hypothesis (H₁ or Ha) play critical roles. The null hypothesis generally assumes no difference, effect, or relationship between variables, suggesting that any observed change or effect is due to random chance. Its counterpart, the alternative hypothesis, asserts the presence of a significant difference, effect, or relationship between variables, challenging the null hypothesis. These hypotheses are formulated based on the research question and guide statistical analyses.

Null Hypothesis vs Alternative Hypothesis

The null hypothesis (H 0 ) serves as the baseline assumption in statistical testing, suggesting no significant effect, relationship, or difference within the data. It often proposes that any observed change or correlation is merely due to chance or random variation. Conversely, the alternative hypothesis (H 1 or Ha) contradicts the null hypothesis, positing the existence of a genuine effect, relationship or difference in the data. It represents the researcher’s intended focus, seeking to provide evidence against the null hypothesis and support for a specific outcome or theory. These hypotheses form the crux of hypothesis testing, guiding the assessment of data to draw conclusions about the population being studied.

Example of Alternative and Null Hypothesis

Let’s envision a scenario where a researcher aims to examine the impact of a new medication on reducing blood pressure among patients. In this context:

Null Hypothesis (H 0 ): “The new medication does not produce a significant effect in reducing blood pressure levels among patients.”

Alternative Hypothesis (H 1 or Ha): “The new medication yields a significant effect in reducing blood pressure levels among patients.”

The null hypothesis implies that any observed alterations in blood pressure subsequent to the medication’s administration are a result of random fluctuations rather than a consequence of the medication itself. Conversely, the alternative hypothesis contends that the medication does indeed generate a meaningful alteration in blood pressure levels, distinct from what might naturally occur or by random chance.

Also, Check

Solved Examples on Null Hypothesis

Example 1: A researcher claims that the average time students spend on homework is 2 hours per night.

Null Hypothesis (H 0 ): The average time students spend on homework is equal to 2 hours per night. Data: A random sample of 30 students has an average homework time of 1.8 hours with a standard deviation of 0.5 hours. Test Statistic and Decision: Using a t-test, if the calculated t-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: Based on the statistical analysis, we fail to reject the null hypothesis, suggesting that there is not enough evidence to dispute the claim of the average homework time being 2 hours per night.

Example 2: A company asserts that the error rate in its production process is less than 1%.

Null Hypothesis (H 0 ): The error rate in the production process is 1% or higher. Data: A sample of 500 products shows an error rate of 0.8%. Test Statistic and Decision: Using a z-test, if the calculated z-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: The statistical analysis supports rejecting the null hypothesis, indicating that there is enough evidence to dispute the company’s claim of an error rate of 1% or higher.

Null Hypothesis – Practice Problems

Q1. A researcher claims that the average time spent by students on homework is less than 2 hours per day. Formulate the null hypothesis for this claim?

Q2. A manufacturing company states that their new machine produces widgets with a defect rate of less than 5%. Write the null hypothesis to test this claim?

Q3. An educational institute believes that their online course completion rate is at least 60%. Develop the null hypothesis to validate this assertion?

Q4. A restaurant claims that the waiting time for customers during peak hours is not more than 15 minutes. Formulate the null hypothesis for this claim?

Q5. A study suggests that the mean weight loss after following a specific diet plan for a month is more than 8 pounds. Construct the null hypothesis to evaluate this statement?

Null Hypothesis – Frequently Asked Questions

How to form a null hypothesis.

A null hypothesis is formed based on the assumption that there is no significant difference or effect between the groups being compared or no association between variables being tested. It often involves stating that there is no relationship, no change, or no effect in the population being studied.

When Do we reject the Null Hypothesis?

In statistical hypothesis testing, if the p-value (the probability of obtaining the observed results) is lower than the chosen significance level (commonly 0.05), we reject the null hypothesis. This suggests that the data provides enough evidence to refute the assumption made in the null hypothesis.

What is a Null Hypothesis in Research?

In research, the null hypothesis represents the default assumption or position that there is no significant difference or effect. Researchers often try to test this hypothesis by collecting data and performing statistical analyses to see if the observed results contradict the assumption.

What Are Alternative and Null Hypotheses?

The null hypothesis (H0) is the default assumption that there is no significant difference or effect. The alternative hypothesis (H1 or Ha) is the opposite, suggesting there is a significant difference, effect or relationship.

What Does it Mean to Reject the Null Hypothesis?

Rejecting the null hypothesis implies that there is enough evidence in the data to support the alternative hypothesis. In simpler terms, it suggests that there might be a significant difference, effect or relationship between the groups or variables being studied.

How to Find Null Hypothesis?

Formulating a null hypothesis often involves considering the research question and assuming that no difference or effect exists. It should be a statement that can be tested through data collection and statistical analysis, typically stating no relationship or no change between variables or groups.

How is Null Hypothesis denoted?

The null hypothesis is commonly symbolized as H 0 in statistical notation.

What is the Purpose of the Null hypothesis in Statistical Analysis?

The null hypothesis serves as a starting point for hypothesis testing, enabling researchers to assess if there’s enough evidence to reject it in favor of an alternative hypothesis.

What happens if we Reject the Null hypothesis?

Rejecting the null hypothesis implies that there is sufficient evidence to support an alternative hypothesis, suggesting a significant effect or relationship between variables.

Is it Possible to Prove the Null Hypothesis?

No, statistical testing aims to either reject or fail to reject the null hypothesis based on evidence from sample data. It does not prove the null hypothesis to be true.

What are Test for Null Hypothesis?

Various statistical tests, such as t-tests or chi-square tests, are employed to evaluate the validity of the Null Hypothesis in different scenarios.

Please Login to comment...

Similar reads.

  • Geeks Premier League 2023
  • Math-Concepts
  • Geeks Premier League
  • School Learning

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Statistics

Course: ap®︎/college statistics   >   unit 10.

  • Idea behind hypothesis testing

Examples of null and alternative hypotheses

  • Writing null and alternative hypotheses
  • P-values and significance tests
  • Comparing P-values to different significance levels
  • Estimating a P-value from a simulation
  • Estimating P-values from simulations
  • Using P-values to make conclusions

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Good Answer

Video transcript

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

10.2: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 100392

The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

  • The null hypothesis (\(H_{0}\)) is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
  • The alternative hypothesis (\(H_{a}\)) is a claim about the population that is contradictory to \(H_{0}\) and what we conclude when we reject \(H_{0}\).

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data. After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_{0}\)" if the sample information favors the alternative hypothesis or "do not reject \(H_{0}\)" or "decline to reject \(H_{0}\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  66\)
  • \(H_{a}: \mu \  \_ \  66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  45\)
  • \(H_{a}: \mu \  \_ \  45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \  \_ \  0.40\)
  • \(H_{a}: p \  \_ \  0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Chapter Review

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Contributors

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

How to Insert the Null Hypothesis & Alternate Hypothesis Symbols in Microsoft Word

Although the symbols for the null hypothesis and alternative hypothesis -- sometimes called the alternate hypothesis -- do not exist as special characters in Microsoft Word, they are easily created with subscripts.The alternate hypothesis is symbolically represented by a capitalized "H," followed by a subscript "1," although some researchers prefer an "a." The null hypothesis is represented by a capitalized "H," followed by a subscript "0" or "o." The accepted practice in the scientific community is to use two hypotheses when testing the relationship between two events. The alternative hypothesis states that the two events are related. However, scientists have found that testing for a direct correlation can cause bias in the testing procedure. To avoid this bias, scientists test a null hypothesis that states there is no correlation. By disproving the null hypothesis, you imply a correlation in the alternate hypothesis. A similar system is used in the United States legal system where a defendant is found "not guilty," rather than being found "innocent."

Advertisement

Open your document in Microsoft Word and click wherever you want the hypothesis symbols to appear.

Video of the Day

Type a capital "H" on your keyboard.

Click the subscript button, located in the "Font" group of the "Home" tab. This button's icon looks like an "x" with a subscript "2." Alternatively, hold the "Ctrl" key and press "=".

Type a "0" to create a null hypothesis symbol or "1" to create an alternative hypothesis symbol. Alternatively, type an "o" or "a" to represent the null and alternative hypotheses, respectively, although these symbols are not as frequently used.

Press the subscript button again to exit this formatting mode.

  • University of New England: Null and Alternative Hypothesis

Report an Issue

Screenshot loading...

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

TXLS logo

9.1 Null and Alternative Hypotheses

Introduction.

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 — The null hypothesis: It is a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a — The alternative hypothesis: It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following:

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following:

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses.

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Copy and paste the link code above.

Related Items

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 29612

Null and Alternative Hypotheses

[latexpage]

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

H 1 : The alternative hypothesis: It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 . This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “fail to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H 1 :

H 0 always has an equal symbol in it. H 1 never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 8.1

Statement : No more than 30% of the registered voters in Santa Clara County voted in the primary election.

From the statement above, identify the Null and Alternative Hypothesis.

Solution 8 .1

Claim (in symbols): p ≤ 0.30

Opposite of Claim: p > 0.30

Looking at the Claim and the Opposite, we first find the one that has an equal sign. In this example, it is the Claim because that is where we see the “≤” (it is read “less than or equal to” which is why we say it has the “equal” in it). This is what we convert into our null hypothesis H 0 . So p ≤ 0.30 becomes p = 0.30.

H 0 : p ≤ 0.30

Looking again at the Claim and Opposite, find the the one that does not have an equal sign. In this example, it is the Opposite. This becomes our Alternative Hypothesis.

H 1 : p > 0.30

It will become important later on to remember whether the Null Hypothesis or the Alternative Hypothesis came from the Claim, so it is a good practice to associate them somehow. In the table below, I put the Claim and Opposite in the first column. Then, in the second column, I put the Null Hypothesis H 0 in the first row across from the Claim, because H 0 “came from” the Claim (ie the claim had the equal sign in it).

A medical trial is conducted to test a drug company’s claim that a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the claim, opposite, null and alternative hypotheses. Also fill in the blanks indicating where the null and alternative hypotheses would go, indicating their correspondence with the claim and the opposite.

Example 8.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0).

Solution 8.2

Notice that this time, as opposed to Example 8.1, our null hypothesis corresponds to the Opposite. This is because the claim did not have an equal sign in it; in fact, it had a “not equal” sign because the original statement used the phrase “different from”, which suggests “not equal”.

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses.

Example 8.3

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are: H 0 : μ ≥ 5 H 1 : μ < 5

Solution 8.3

Notice that in this example, we had to convert the symbol in our “Opposite” statement from “≥” to an equal symbol in our Null Hypothesis.

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses.

Create the table identifying the claim, opposite, null hypothesis and alternative hypothesis. Put the null and alternative hypothesis in the correct row to show correspondence with the claim and opposite.

Example 8.4

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H 1 : p > 0.066

Solution 8.4

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try.

Stats without Tears Statistics Symbol Sheet

Updated 5 Nov 2020 ( What’s New? ) Copyright © 2002–2024 by Stan Brown, BrownMath.com

Here are symbols for various sample statistics and the corresponding population parameters. They are not repeated in the list below.

μ and σ can take subscripts to show what you are taking the mean or standard deviation of. For instance, σ x̅ (“sigma sub x-bar”) is the standard deviation of sample means, or standard error of the mean.

Roman Letters

  • b = y intercept of a line. Defined here in Chapter 4. (Some statistics books use b 0 .)
  • BD or BPD = binomial probability distribution. Defined here in Chapter 6.
  • CI = confidence interval. Defined here in Chapter 9.
  • CLT = Central Limit Theorem. Defined here in Chapter 8.
  • d = difference between paired data. Defined here in Chapter 11.
  • df or ν “nu” = degrees of freedom in a Student’s t or χ² distribution. Defined here in Chapter 9. Defined here in Chapter 12.
  • DPD = discrete probability distribution. Defined here in Chapter 6.
  • E = margin of error, a/k/a maximum error of the estimate. Defined here in Chapter 9.
  • f = frequency. Defined here in Chapter 2.
  • f / n = relative frequency. Defined here in Chapter 2.
  • HT = hypothesis test. Defined here in Chapter 10.
  • H o = null hypothesis. Defined here in Chapter 10.
  • H 1 or H a = alternative hypothesis. Defined here in Chapter 10.
  • IQR = interquartile range, Q 3 −Q 1 . Defined here in Chapter 3.
  • m = slope of a line. Defined here in Chapter 4. (The TI-83 uses a and some statistics books use b 1 .)
  • M or Med = median of a sample. Defined here in Chapter 3.
  • n = sample size, number of data points. Defined here in Chapter 2. Also, number of trials in a probability experiment with a binomial model. Defined here in Chapter 6.
  • N = population size.
  • ND = normal distribution, whose graph is a bell-shaped curve; also “normally distributed”. Defined here in Chapter 7.

In geometric and binomial probability distributions, p is the probability of “success” ( defined here in Chapter 6) on any one trial and q  = (1− p ) is the probability of “failure” (the only other possibility) on any one trial.

In hypothesis testing, p is the calculated p-value ( defined here in Chapter 10), the probability that rejecting the null hypothesis would be a wrong decision.

In tests of population proportions, p stands for population proportion and p̂ for sample proportion (see table above).

  • P( A ) = the probability of event A .
  • P( A C ) or P(not  A ) = the probability that A does not happen. Defined here in Chapter 5.

Caution! The order of A and B may seem backward to you at first.

  • P80 or P 80 = 80th percentile ( Pk or P k = k -th percentile) Defined here in Chapter 3.
  • q = probability of failure on any one trial in binomial or geometric distribution, equal to (1− p ) where p is the probability of success on any one trial. Defined here in Chapter 6.
  • Q1 or Q 1 = first quartile ( Q3 or Q 3 = third quartile) Defined here in Chapter 3.
  • r = linear correlation coefficient of a sample. Defined here in Chapter 4.
  • R ² = coefficient of determination. Defined here in Chapter 4.
  • s = standard deviation of a sample. Defined here in Chapter 3.
  • SD (or s.d.) = standard deviation. Defined here in Chapter 3.
  • SEM = standard error of the mean (symbol is σ x̅ ). Defined here in Chapter 8.
  • SEP = standard error of the proportion (symbol is σ p̂ ). Defined here in Chapter 8.
  • X (capital X ) = a variable.
  • x (lower-case x ) = one data value (“raw score”). As a column heading, x means a series of data values.
  • x̅ “x-bar” = mean of a sample. Defined here in Chapter 3.
  • x̃ “x-tilde” = median of a sample. Defined here in Chapter 3.
  • ŷ “y-hat” = predicted average y value for a given x , found by using the regression equation. Defined here in Chapter 4.
  • z = standard score or z-score. Defined here in Chapter 3.
  • z ( area ) or z area = the z-score, such that that much of the area under the normal curve lies to the right of that z . This is not a multiplication! (See The z Function .)

Greek Letters

  • α “alpha” = significance level in hypothesis test, or acceptable probability of a Type I error (probability you can live with). Defined here in Chapter 10. 1−α = confidence level.
  • β “beta” = in a hypothesis test, the acceptable probability of a Type II error; 1−β is called the power of the test.
  • μ mu, pronounced “mew” = mean of a population. Defined here in Chapter 3.
  • ν nu: see df , above.
  • ρ rho, pronounced “roe” = linear correlation coefficient of a population.
  • σ “sigma” = standard deviation of a population. Defined here in Chapter 3.
  • σ x̅ “sigma-sub-x-bar”; see SEM above.
  • σ p̂ “sigma-sub-p-hat”; see SEP above.
  • ∑ “sigma” = summation. (This is upper-case sigma. Lower-case sigma, σ, means standard deviation of a population; see the table near the start of this page .) See ∑ Means Add ’em Up in Chapter 1.
  • χ² “chi-squared” = distribution for multinomial experiments and contingency tables. Defined here in Chapter 12.

What’s New?

  • 5 Nov 2020 : Convert document to HTML5, and italicize the variables.
  • 14 Feb 2018 : Add x̃ for the median, as suggested by reader “Trone”.
  • (intervening changes suppressed)
  • 27 Sept 2002 : New article.

Updates and new info: https://BrownMath.com/swt/

Site Map | Searches | Home Page | Contact

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

H a : The alternative hypothesis: It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 . This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject H 0 " if the sample information favors the alternative hypothesis or "do not reject H 0 " or "decline to reject H 0 " if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ .30 H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Introductory Statistics 2e
  • Publication date: Dec 13, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/introductory-statistics-2e/pages/9-1-null-and-alternative-hypotheses

© Dec 6, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Talk to our experts

1800-120-456-456

  • Null Hypothesis

ffImage

Before understanding the Null Hypothesis in detail, let us first understand the definition of the Hypothesis.

In Statistics, a hypothesis can be defined as a formal statement, which gives an explanation about the relationship between any two or more variables of the specified population. 

Hypothesis helps the researcher to translate any given problem to a clear explanation for the outcome of the study.

 Hypothesis clearly explains and predicts the expected outcome and it indicates the types of experimental design and directs the study of any research process.

What Is The Null Hypothesis?

We can define a null hypothesis as a general statement or a default position that says there is no relationship between two measured phenomena or there is no association among groups. 

Why is Null Hypothesis Important?

Testing (which involves accepting, approving, rejecting, or disproving) the null hypothesis and thus concluding that there are or we can say that there are no grounds for believing that there is any relationship between two phenomena is basically a central task in the modern practice of science; in the field of statistics.

To be more specific, hypothesis testing gives precise criteria for rejecting or accepting a null hypothesis within a level known as the confidence level.

Null Hypothesis Symbol-

A Null Hypothesis is denoted by the symbol H 0  in statistics. It is usually pronounced as “h-nought” or “H-null”. The Subscript in H is the digit 0.

Null Hypothesis Principle and When is A Null Hypothesis Rejected?

The principle followed for null hypothesis testing is basically collecting the data and determining the chances of a given set of data during the study on any given random sample, assuming that the null hypothesis is true.

Suppose, if the given data does not face the expected null hypothesis, then the outcome we will get will be quite weaker and they conclude that by saying that the given set of data does not provide strong evidence against the null hypothesis which is because of insufficient evidence.

Finally, this leads to null hypothesis rejection.

Null Hypothesis Formula or How Do You Find The Null Hypothesis :

So far, understanding the concept of null hypothesis, let’s now discuss the null hypothesis formula:

Here, the null hypothesis formula is given below.

H 0 :  p = p 0

The formula for the alternative hypothesis can be written as: H a = p >p 0 , and < p 0 ≠ p 0

The formula for the test static is denoted by:

\[Z=\frac{P-P_{0}}{\sqrt{\frac{P-P_{0}}{n}}}\]

Remember that, p 0 here is the null hypothesis.

Types of Null Hypothesis.

There are 4 different types of Null hypothesis. Each of them is explained below with examples.

Simple Hypothesis: A simple Hypothesis is the one in which the relationship between two variables is predicted. One is an independent variable and the other is a dependent variable. A simple Hypothesis completely specifies the population distribution. An example of a simple Hypothesis is “Consuming sugar drinks daily leads to being overweight.”

Composite hypothesis. A Composite hypothesis describes the relationship between two or more independent variables and two or more dependent variables. In this hypothesis, the population distribution is not specified. An example of the Composite hypothesis is stated below. “ Individuals who consume sugar drinks daily and have a family history of health issues are more likely to become overweight and develop diabetes.”

Exact hypothesis. In this hypothesis, the exact value of the parameter or variable is defined. All the assumptions made during the derivation of the hypothesis are met in the exact hypothesis. An example of an exact hypothesis is, “ Students in a division score an average 17 out of 25 in exams. Hence, μ=17.”

Inexact hypothesis. Unlike the exact hypothesis, the exact value of the parameter or variable is not defined in the Inexact type of Hypothesis. Instead, a specific range or interval of the parameter is stated. For example, Students in class score an average between 12 to 15 out of 20 in exams. Hence, 12< μ< 15.

Null Hypothesis Problem Problem : A researcher thinks that if the knee surgery patients go to physical therapy twice a week (instead of going 3 times), their recovery period will be longer. Given average recovery time knee surgery patients are given 8.2 weeks. 

Step 1: First, we need to figure out the hypothesis from the problem . The hypothesis is usually hidden in a word problem that you need to figure out. The hypothesis that has been given in the above question is “I expect the average recovery period to be greater than 8.2 weeks.”

Step 2: You need to convert the hypothesis to math . Remember that the average can be sometimes written as μ.

H 1 : μ > 8.2(average)

Step 3: Now state what will happen if the hypothesis doesn’t come true. If the recovery time is not greater than the given average that is 8.2 weeks, there are only two possibilities, that the recovery time is equal to 8.2 weeks or it is less than 8.2 weeks.

H 0 : μ ≤ 8.2

H 0 (The null hypothesis): μ (the average) ≤ (is less than or equal to) 8.2

H 0 🡪 μ 1 = μ 2 where

H 0 is the null hypothesis,

μ 1 is the mean of population 1, and

μ 2 is the mean of population 2.

A stronger null hypothesis denotes that if two samples are drawn from the same given population, such that the variances and shapes of the given distributions are also equal.

Examples of situations where hypothesis tests are used in the real world.

Is there a 100% chance of getting affected by dengue?

Answer : There could be chances of getting affected by dengue but the chances of getting affected by dengue are not 100%.

Do teenagers these days use mobile phones more than adults to access the internet?

Answer : Age has no limit and is not a factor that we can use mobile phones to access the internet.

Does having the fruit apple daily will not cause fever?

Answer : Having an apple daily does not assure of not having fever, but on the other hand it does increase the immunity to fight against such diseases.

Are children better at performing mathematical calculations than adults?

Answer : Again in this example too, age has no effect on Mathematical skills.

Hypothesis tests are often conducted in botany to determine whether some new treatment, fertilizer or chemical can cause increased growth, stamina or immunity in plants and animals. 

Suppose, a botanist believes that a certain fertilizer will cause plants to grow more during a 1 month period than what they actually grow. Currently, they grow to 20 inches. To test the effectiveness of the fertilizer, the botanist applies the fertilizer to each of the plants in her lab for a month. Then performs a hypothesis test using the following hypothesis: H 0 : μ = 20 inches as the effect is nil on the mean plant growth by the fertilizer.

H A : μ > 20 inches (the fertilizer will cause mean plant growth to increase)

If the p-value of the test is significantly less then it will reject the null hypothesis and as a result, the fertilizer leads to increased plant growth.

In clinical trials, hypothesis tests are often used to determine whether some new treatment, drug, procedure, etc. cause improved outcomes in patients and thus elevate the treatment levels. Suppose a doctor wishes to test a new drug that reduces blood pressure in obese patients. To test its effectiveness, the doctor may measure the blood pressure of 40 patients before and after using the new drug for a month. Then a hypothesis test is performed using the following hypothesis. H 0 : μafter = μbefore  means the  mean blood pressure is the same before and after using the drug

H A : μafter < μbefore (the mean blood pressure is less after using the drug)

Hypothesis tests are often conducted in business organizations to determine whether a new advertising campaign will get more leads and cause an increase in sales. Suppose, the executive team of an organization believes that spending more on digital advertising leads to increased sales. To test this, the organization may increase money spent on digital advertising during a 3 month period and collect data to see if overall sales have increased or not. A hypothesis test can be performed using the following hypothesis.

H 0 : μafter = μbefore signifies  the  mean sales is the same before and after spending more on advertising

H A : μafter > μbefore (the mean sales increased spending more on advertising)

Apart from just the above 3 examples, hypothesis testing is widely used in research centers, chemical laboratories, stock market predictions, the Investment industry and several business organizations.

Decision errors.

There are two types of decision errors that can happen when doing a hypothesis test. They are described below.

Type I error: This happens when one rejects the null hypothesis despite the null hypothesis being true. The probability of making a type I error is equal to the alpha level significantly

Type II error. This happens when one fails to reject the null hypothesis when it is actually false. The probability of committing a type II error is the power of the test. 

Importance of Hypothesis testing in real life and examples

The main aim of a hypothesis statement in statistics is to determine whether or not some hypothesis of a population parameter is true or false. It is an essential part of the procedures in statistics. 

A hypothesis test evaluates two mutually exclusive statements and determines which statement is best supported by sample data. A discovery or a new finding holds a significant value when supported by a hypothesis test. Because the hypothesis test provides sufficient evidence to check the credibility of the given data.

To conduct a hypothesis test in the practical world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data using Null and Alternative hypotheses.                          

Difference between Null Hypothesis and Alternative Hypothesis.

arrow-right

FAQs on Null Hypothesis

1. Why is a null hypothesis important and can you accept a null hypothesis?

The purpose and the importance of the null hypothesis and alternative hypothesis are that they provide an approximate description of any given phenomena. The purpose of the null hypothesis is to provide the researcher or an investigator with the relational statement that is directly tested in any research study. 

A null hypothesis is a hypothesis that is never acceptable. We either reject them or we fail to reject them. Hence, failing to reject the null hypothesis does not mean that we have shown that there is no difference in accepting the null hypothesis.

2. State one example where a Null hypothesis is applied in a practical life scenario?

The concept of null hypothesis has a variety of practical applications. Let us take the example of stock investment, buying shares of a company. The annual return of company stock when invested for a long duration is assumed to be 7.5%. 

Now to test if the assumption is true or false, we consider the null hypothesis to be, ”the mean annual return for XYZ company shares is not 7.5%”. To test this hypothesis, we first accept the null hypothesis.

We then check the history of the stock performance of the last 5 years of XYZ company and then calculate the mean of the annual return. The result is then compared to the assumed annual return of 7.5%. 

If it turns out that the average annual return of the last 5 years is 7.5%, then the null hypothesis is rejected. And the alternative hypothesis is accepted.

3. What is the purpose of Hypothesis testing?

Hypothesis testing is a statistical process of testing an assumption regarding a particular phenomenon or parameter. Often a good theory can make accurate predictions. However, for an analyst, hypothesis testing is a rigorous way of backing up his prediction with statistical analysis to support the predictions. It is also helpful to determine sufficient statistical evidence that can favor a certain hypothesis about the specified parameter.

In simple words, hypothesis testing is a systematic approach to assessing theories through observations and then determining whether the stated statement is true or false.

Frequently asked questions

What symbols are used to represent null hypotheses.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

Frequently asked questions: Statistics

Some variables have fixed levels. For example, gender and ethnicity are always nominal level data because they cannot be ranked.

However, for other variables, you can choose the level of measurement . For example, income is a variable that can be recorded on an ordinal or a ratio scale:

  • At an ordinal level , you could create 5 income groupings and code the incomes that fall within them from 1–5.
  • At a ratio level , you would record exact numbers for income.

If you have a choice, the ratio level is always preferable because you can analyse data in more ways. The higher the level of measurement, the more precise your data is.

The level at which you measure a variable determines how you can analyse your data.

Depending on the level of measurement , you can perform different descriptive statistics to get an overall summary of your data and inferential statistics to see if your results support or refute your hypothesis .

Levels of measurement tell you how precisely variables are recorded. There are 4 levels of measurement, which can be ranked from low to high:

  • Nominal : the data can only be categorised.
  • Ordinal : the data can be categorised and ranked.
  • Interval : the data can be categorised and ranked, and evenly spaced.
  • Ratio : the data can be categorised, ranked, evenly spaced and has a natural zero.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

As the degrees of freedom increase, Student’s t distribution becomes less leptokurtic , meaning that the probability of extreme values decreases. The distribution becomes more and more similar to a standard normal distribution .

When there are only one or two degrees of freedom , the chi-square distribution is shaped like a backwards ‘J’. When there are three or more degrees of freedom, the distribution is shaped like a right-skewed hump. As the degrees of freedom increase, the hump becomes less right-skewed and the peak of the hump moves to the right. The distribution becomes more and more similar to a normal distribution .

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between three deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

IMAGES

  1. How to type null hypothesis symbol in word

    null hypothesis symbol copy paste

  2. PPT

    null hypothesis symbol copy paste

  3. Null hypothesis and alternative hypothesis with 9 differences

    null hypothesis symbol copy paste

  4. How to type null hypothesis symbol in word

    null hypothesis symbol copy paste

  5. PPT

    null hypothesis symbol copy paste

  6. Null Hypothesis

    null hypothesis symbol copy paste

VIDEO

  1. Primitives in JavaScript

  2. Null and Alternative Hypotheses

  3. HOW TO: Create Hypothesis-enabled readings in D2L Brightspace using the new assignment workflow

  4. Null Hypothesis ll शून्य परिकल्पना by Dr Vivek Maheshwari

  5. Introduction to Statistics: Interpreting Hypothesis Tests

  6. NULL|ALTERNATIVE HYPOTHESIS|CRITICAL REGION| TYPE 1 AND 2 ERROR| CONCEPTS OF HYPOTHESIS TESTING

COMMENTS

  1. Null Hypothesis

    Here, the hypothesis test formulas are given below for reference. The formula for the null hypothesis is: H 0 : p = p 0. The formula for the alternative hypothesis is: H a = p >p 0, < p 0 ≠ p 0. The formula for the test static is: Remember that, p 0 is the null hypothesis and p - hat is the sample proportion.

  2. How to Insert the Null Hypothesis Symbol in Microsoft Word

    Typing the Symbol. To type the null hypothesis symbol, type the letter "H" and then click the subscript icon in the Font section of the Home tab. Your cursor will appear smaller, and you can now type the numeral "0." When you press the space bar, your font will change back to your default font size and you can continue typing.

  3. Null & Alternative Hypotheses

    A null hypothesis claims that there is no effect in the population, while an alternative hypothesis claims that there is an effect. ... When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤). ... you can copy and paste the citation or click the "Cite this ...

  4. Null Hypothesis

    Symbol of Null Hypothesis. Null Hypothesis is represented as H 0, the Null Hypothesis symbolizes the absence of a measurable effect or difference in the variables under examination. Certainly, a simple example would be asserting that the mean score of a group is equal to a specified value like stating that the average IQ of a population is 100.

  5. 9.1: Null and Alternative Hypotheses

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

  6. Null and Alternative Hypotheses

    A null hypothesis claims that there is no effect in the population, while an alternative hypothesis claims that there is an effect. ... Symbols used: Equality symbol (=, ≥, or ≤) ... you can copy and paste the citation or click the 'Cite this Scribbr article' button to automatically add the citation to our free Reference Generator.

  7. Null Hypothesis: Definition, Rejecting & Examples

    When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant. Statisticians often denote the null hypothesis as H 0 or H A.. Null Hypothesis H 0: No effect exists in the population.; Alternative Hypothesis H A: The effect exists in the population.; In every study or experiment, researchers assess an effect or relationship.

  8. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  9. What symbols are used to represent null hypotheses?

    The null hypothesis is often abbreviated as H0. When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

  10. Examples of null and alternative hypotheses

    It is the opposite of your research hypothesis. The alternative hypothesis--that is, the research hypothesis--is the idea, phenomenon, observation that you want to prove. If you suspect that girls take longer to get ready for school than boys, then: Alternative: girls time > boys time. Null: girls time <= boys time.

  11. 10.2: Null and Alternative Hypotheses

    The alternative hypothesis ( Ha H a) is a claim about the population that is contradictory to H0 H 0 and what we conclude when we reject H0 H 0. Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample ...

  12. How to Insert the Null Hypothesis & Alternate Hypothesis Symbols in

    Step 4. Type a "0" to create a null hypothesis symbol or "1" to create an alternative hypothesis symbol. Alternatively, type an "o" or "a" to represent the null and alternative hypotheses, respectively, although these symbols are not as frequently used. Advertisement.

  13. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0 (The null hypothesis): It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

  14. Null and Alternative Hypotheses

    Note. H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis.

  15. 9.1 Null and Alternative Hypotheses

    H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

  16. 8.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  17. Symbol Sheet / SWT

    HT = hypothesis test. Defined here in Chapter 10. H o = null hypothesis. Defined here in Chapter 10. H 1 or H a = alternative hypothesis. Defined here in Chapter 10. IQR = interquartile range, Q 3 −Q 1. Defined here in Chapter 3. m = slope of a line. Defined here in Chapter 4. (The TI-83 uses a and some statistics books use b 1.) M or Med ...

  18. 9.1 Null and Alternative Hypotheses

    H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis.

  19. Null hypothesis

    To be more specific, hypothesis testing gives precise criteria for rejecting or accepting a null hypothesis within a level known as the confidence level. Null Hypothesis Symbol-A Null Hypothesis is denoted by the symbol H 0 in statistics. It is usually pronounced as "h-nought" or "H-null". The Subscript in H is the digit 0.

  20. What symbols are used to represent null hypotheses?

    The null hypothesis is often abbreviated as H0 and always includes an equality symbol (usually =, but sometimes ≥ or ≤). FAQ ... When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤). ... Copy editing Focus on grammar, syntax, style, tone and the ...