Search

www.springer.com The European Mathematical Society

  • StatProb Collection
  • Recent changes
  • Current events
  • Random page
  • Project talk
  • Request account
  • What links here
  • Related changes
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • View source

Assignment problem

The problem of optimally assigning $ m $ individuals to $ m $ jobs. It can be formulated as a linear programming problem that is a special case of the transport problem :

maximize $ \sum _ {i,j } c _ {ij } x _ {ij } $

$$ \sum _ { j } x _ {ij } = a _ {i} , i = 1 \dots m $$

(origins or supply),

$$ \sum _ { i } x _ {ij } = b _ {j} , j = 1 \dots n $$

(destinations or demand), where $ x _ {ij } \geq 0 $ and $ \sum a _ {i} = \sum b _ {j} $, which is called the balance condition. The assignment problem arises when $ m = n $ and all $ a _ {i} $ and $ b _ {j} $ are $ 1 $.

If all $ a _ {i} $ and $ b _ {j} $ in the transposed problem are integers, then there is an optimal solution for which all $ x _ {ij } $ are integers (Dantzig's theorem on integral solutions of the transport problem).

In the assignment problem, for such a solution $ x _ {ij } $ is either zero or one; $ x _ {ij } = 1 $ means that person $ i $ is assigned to job $ j $; the weight $ c _ {ij } $ is the utility of person $ i $ assigned to job $ j $.

The special structure of the transport problem and the assignment problem makes it possible to use algorithms that are more efficient than the simplex method . Some of these use the Hungarian method (see, e.g., [a5] , [a1] , Chapt. 7), which is based on the König–Egervary theorem (see König theorem ), the method of potentials (see [a1] , [a2] ), the out-of-kilter algorithm (see, e.g., [a3] ) or the transportation simplex method.

In turn, the transportation problem is a special case of the network optimization problem.

A totally different assignment problem is the pole assignment problem in control theory.

  • This page was last edited on 5 April 2020, at 18:48.
  • Privacy policy
  • About Encyclopedia of Mathematics
  • Disclaimers
  • Impressum-Legal

Operations Research - Definition and formulation of Assignment Problem | 12th Business Maths and Statistics : Chapter 10 : Operations Research

Chapter: 12th business maths and statistics : chapter 10 : operations research, definition and formulation of assignment problem.

Definition and formulation

Consider the problem of assigning n jobs to n machines (one job to one machine). Let C ij be the cost of assigning i th job to the j th machine and x ij represents the assignment of i th job to the j th machine.

write mathematical model of assignment problem

 x ij is missing in any cell means that no assignment is made between the pair of job and machine.( i.e ) x ij = 0.

x ij presents in any cell means that an assignment is made their.In such cases x ij = 1

The assignment model can be written in LPP as follows

write mathematical model of assignment problem

Subject to the constrains

write mathematical model of assignment problem

The optimum assignment schedule remains unaltered if we add or subtract a constant from all the elements of the row or column of the assignment cost matrix.

If for an assignment problem all C ij > 0 then an assignment schedule (x ij ) which satisfies ∑ C ij x ij   = 0 must be optimal.

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Quadratic assignment problem

Author: Thomas Kueny, Eric Miller, Natasha Rice, Joseph Szczerba, David Wittmann (SysEn 5800 Fall 2020)

  • 1 Introduction
  • 2.1 Koopmans-Beckman Mathematical Formulation
  • 2.2.1 Parameters
  • 2.3.1 Optimization Problem
  • 2.4 Computational Complexity
  • 2.5 Algorithmic Discussions
  • 2.6 Branch and Bound Procedures
  • 2.7 Linearizations
  • 3.1 QAP with 3 Facilities
  • 4.1 Inter-plant Transportation Problem
  • 4.2 The Backboard Wiring Problem
  • 4.3 Hospital Layout
  • 4.4 Exam Scheduling System
  • 5 Conclusion
  • 6 References

Introduction

The Quadratic Assignment Problem (QAP), discovered by Koopmans and Beckmann in 1957 [1] , is a mathematical optimization module created to describe the location of invisible economic activities. An NP-Complete problem, this model can be applied to many other optimization problems outside of the field of economics. It has been used to optimize backboards, inter-plant transportation, hospital transportation, exam scheduling, along with many other applications not described within this page.

Theory, Methodology, and/or Algorithmic Discussions

Koopmans-beckman mathematical formulation.

Economists Koopmans and Beckman began their investigation of the QAP to ascertain the optimal method of locating important economic resources in a given area. The Koopmans-Beckman formulation of the QAP aims to achieve the objective of assigning facilities to locations in order to minimize the overall cost. Below is the Koopmans-Beckman formulation of the QAP as described by neos-guide.org.

Quadratic Assignment Problem Formulation

{\displaystyle F=(F_{ij})}

Inner Product

{\displaystyle A,B}

Note: The true objective cost function only requires summing entries above the diagonal in the matrix comprised of elements

{\displaystyle F_{i,j}(X_{\phi }DX_{\phi }^{T})_{i,j}}

Since this matrix is symmetric with zeroes on the diagonal, dividing by 2 removes the double count of each element to give the correct cost value. See the Numerical Example section for an example of this note.

Optimization Problem

With all of this information, the QAP can be summarized as:

{\displaystyle \min _{X\in P}\langle F,XDX^{T}\rangle }

Computational Complexity

QAP belongs to the classification of problems known as NP-complete, thus being a computationally complex problem. QAP’s NP-completeness was proven by Sahni and Gonzalez in 1976, who states that of all combinatorial optimization problems, QAP is the “hardest of the hard”. [2]

Algorithmic Discussions

While an algorithm that can solve QAP in polynomial time is unlikely to exist, there are three primary methods for acquiring the optimal solution to a QAP problem:

  • Dynamic Program
  • Cutting Plane

Branch and Bound Procedures

The third method has been proven to be the most effective in solving QAP, although when n > 15, QAP begins to become virtually unsolvable.

The Branch and Bound method was first proposed by Ailsa Land and Alison Doig in 1960 and is the most commonly used tool for solving NP-hard optimization problems.

A branch-and-bound algorithm consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate solutions is thought of as forming a rooted tree with the full set at the root. The algorithm explores branches of this tree, which represent subsets of the solution set. Before one lists all of the candidate solutions of a branch, the branch is checked against upper and lower estimated bounds on the optimal solution, and the branch is eliminated if it cannot produce a better solution than the best one found so far by the algorithm.

Linearizations

The first attempts to solve the QAP eliminated the quadratic term in the objective function of

{\displaystyle min\sum _{i=1}^{n}\sum _{j=1}^{n}c{_{\phi (i)\phi (j)}}+\sum _{i=1}^{n}b{_{\phi (i)}}}

in order to transform the problem into a (mixed) 0-1 linear program. The objective function is usually linearized by introducing new variables and new linear (and binary) constraints. Then existing methods for (mixed) linear integer programming (MILP) can be applied. The very large number of new variables and constraints, however, usually poses an obstacle for efficiently solving the resulting linear integer programs. MILP formulations provide LP relaxations of the problem which can be used to compute lower bounds.

Numerical Example

Qap with 3 facilities.

{\displaystyle D={\begin{bmatrix}0&5&6\\5&0&3.6\\6&3.6&0\end{bmatrix}}}

Applications

Inter-plant transportation problem.

The QAP was first introduced by Koopmans and Beckmann to address how economic decisions could be made to optimize the transportation costs of goods between both manufacturing plants and locations. [1] Factoring in the location of each of the manufacturing plants as well as the volume of goods between locations to maximize revenue is what distinguishes this from other linear programming assignment problems like the Knapsack Problem.

The Backboard Wiring Problem

As the QAP is focused on minimizing the cost of traveling from one location to another, it is an ideal approach to determining the placement of components in many modern electronics. Leon Steinberg proposed a QAP solution to optimize the layout of elements on a blackboard by minimizing the total amount of wiring required. [4]

When defining the problem Steinberg states that we have a set of n elements

{\displaystyle E=\left\{E_{1},E_{2},...,E_{n}\right\}}

as well as a set of r points

{\displaystyle P_{1},P_{2},...,P_{r}}

In his paper he derives the below formula:

{\displaystyle min\sum _{1\leq i\leq j\leq n}^{}C_{ij}(d_{s(i)s(j))})}

In his paper Steinberg a backboard with a 9 by 4 array, allowing for 36 potential positions for the 34 components that needed to be placed on the backboard. For the calculation, he selected a random initial placement of s1 and chose a random family of 25 unconnected sets.

The initial placement of components is shown below:

write mathematical model of assignment problem

After the initial placement of elements, it took an additional 35 iterations to get us to our final optimized backboard layout. Leading to a total of 59 iterations and a final wire length of 4,969.440.

write mathematical model of assignment problem

Hospital Layout

Building new hospitals was a common event in 1977 when Alealid N Elshafei wrote his paper on "Hospital Layouts as a Quadratic Assignment Problem". [5] With the high initial cost to construct the hospital and to staff it, it is important to ensure that it is operating as efficiently as possible. Elshafei's paper was commissioned to create an optimization formula to locate clinics within a building in such a way that minimizes the total distance that a patient travels within the hospital throughout the year. When doing a study of a major hospital in Cairo he determined that the Outpatient ward was acting as a bottleneck in the hospital and focused his efforts on optimizing the 17 departments there.

Elshafei identified the following QAP to determine where clinics should be placed:

{\displaystyle min\sum _{i,j}\sum _{k,q}f_{ik}d_{jq}y_{ij}y_{kq}}

For the Cairo hospital with 17 clinics, and one receiving and recording room bringing us to a total of 18 facilities. By running the above optimization Elshafei was able to get the total distance per year down to 11,281,887 from a distance of 13,973,298 based on the original hospital layout.

Exam Scheduling System

The scheduling system uses matrices for Exams, Time Slots, and Rooms with the goal of reducing the rate of schedule conflicts. To accomplish this goal, the “examination with the highest cross faculty student is been prioritized in the schedule after which the examination with the highest number of cross-program is considered and finally with the highest number of repeating student, at each stage group with the highest number of student are prioritized.” [6]

{\displaystyle n!}

  • ↑ 1.0 1.1 1.2 Koopmans, T., & Beckmann, M. (1957). Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53-76. doi:10.2307/1907742
  • ↑ 2.0 2.1 Quadratic Assignment Problem. (2020). Retrieved December 14, 2020, from https://neos-guide.org/content/quadratic-assignment-problem
  • ↑ 3.0 3.1 3.2 Burkard, R. E., Çela, E., Pardalos, P. M., & Pitsoulis, L. S. (2013). The Quadratic Assignment Problem. https://www.opt.math.tugraz.at/~cela/papers/qap_bericht.pdf .
  • ↑ 4.0 4.1 Leon Steinberg. The Backboard Wiring Problem: A Placement Algorithm. SIAM Review . 1961;3(1):37.
  • ↑ 5.0 5.1 Alwalid N. Elshafei. Hospital Layout as a Quadratic Assignment Problem. Operational Research Quarterly (1970-1977) . 1977;28(1):167. doi:10.2307/300878
  • ↑ 6.0 6.1 Muktar, D., & Ahmad, Z.M. (2014). Examination Scheduling System Based On Quadratic Assignment.

Navigation menu

Quantitative Techniques: Theory and Problems by P. C. Tulsian, Vishal Pandey

Get full access to Quantitative Techniques: Theory and Problems and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

WHAT IS ASSIGNMENT PROBLEM

Assignment Problem is a special type of linear programming problem where the objective is to minimise the cost or time of completing a number of jobs by a number of persons.

The assignment problem in the general form can be stated as follows:

“Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to assign each facility to one and only one job in such a way that the measure of effectiveness is optimised (Maximised or Minimised).”

Several problems of management has a structure identical with the assignment problem.

Example I A manager has four persons (i.e. facilities) available for four separate jobs (i.e. jobs) and the cost of assigning (i.e. effectiveness) each job to each ...

Get Quantitative Techniques: Theory and Problems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

write mathematical model of assignment problem

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Modeling and solving a real-life assignment problem at universities

Profile image of Milan Drazic

1998, European Journal of Operational Research

Related Papers

Journal of Advances in Mathematics and Computer Science

Biralatei Fawei

Combinatorial problems which have been proven to be NP-hard are faced in Higher Education Institutions and researches have extensively investigated some of the well-known combinatorial problems such as the timetabling and student project allocation problems. However, NP-hard problems faced in Higher Education Institutions are not only confined to these categories of combinatorial problems. The majority of NP-hard problems faced in institutions involve grouping students and/or resources, albeit with each problem having its own unique set of constraints. Thus, it can be argued that techniques to solve NP-hard problems in Higher Education Institutions can be transferred across the different problem categories. As no method is guaranteed tooutperform all others in all problems, it is necessary to investigate heuristic techniques for solving lesser-known problems in order to guide stakeholders or software developers to the most appropriate algorithm for each unique class of NP-hard probl...

write mathematical model of assignment problem

Tanzania Journal of Science

Allen Mushi

This paper reports on the design and implementation of an algorithm for the construction of an examinations timetable. The Examinations Timetabling Problem is the problem of assigning examinations and candidates to time periods and examination rooms while satisfying a set of specific constraints. Every University has a different set of constraints and structure of examinations. Generally, timetabling problems are NP-Hard and therefore very difficult to solve. However, they are of great interest due to their important practical application in educational institutions. This paper discusses a heuristic algorithm basing on the examinations timetabling at the University of Dar es salaam. The algorithm uses a Tabu Search technique, which has been successfully applied to other variations of the problem. Real life instance of the problem has been solved within reasonable time and compares with results of the previous work which used a Simulated Annealing Algorithm. It is concluded that the ...

African Journal of Science and Technology

Practice and Theory of Automated Timetabling …

Luca Di Gaspero

This paper gives a combinatorial approach to solving the student exam scheduling problem. The problem is to generate sched- ules that satisfy hard constraints while minimizing soft constraint voilations. This problem is NP-Hard. The problem is decomposed into stages that include nding stable sets, weighted bipartite match- ings, maximum o w, and pathnding in hypergraphs. We describe our method and

Examination timetabling is an important operational problem in any academic institution. The problem involves assigning examinations and candidates to time periods and examination rooms while satisfying a set of specific constraints. An increased number of student enrollments, a wider variety of courses, and the growing flexibility of students' curricula have contributed to the growing challenge in preparing examination timetables. Since examination timetabling problems differ from one institution to another, in this paper we develop and investigate the impact of a two-phase heuristic that combines Graph-Colouring and Simulated Annealing at Sokoine University of Agriculture (SUA) in Tanzania. Computational results are presented which shows great improvement over the previous work on the same problem.

elrond.informatik.tu-freiberg.de

Manar Hosny

International Journal of Metaheuristics

Meryem Cheraitia

International Journal of Computer Applications

Oluwasefunmi Arogundade

European Journal of Operational Research

RELATED PAPERS

Journal of Molecular Catalysis A: Chemical

saeed zakavi

Fabio Regattin

Current Pediatric Research

Olaniyi Olayinka

Pflügers Archiv - European Journal of Physiology

Osama Muhammed

The European respiratory journal

Tourism Scientific Journal

Ita Karnita

FEMS Microbiology Letters

Seema Gupta

Brussels Studies

Michel HUBERT

Hans Gundermann

Revista Geológica de América Central

Jane Eyre Fernandes

Journal of Biological Chemistry

Revista Internacional de Educación para la Justicia Social

Cristina Pulido Montes

Jacques Moussafir

Texts & Monographs in Symbolic Computation

Ralf Hemmecke

Journalistica

Kresten Johansen

Otoritas : Jurnal Ilmu Pemerintahan

Dyah Framesthi

Journal of the Belgian Society of Radiology

Etienne Danse

Syme Queiroz

Elzbieta Dumnicka

Zenodo (CERN European Organization for Nuclear Research)

UBALDO MARQUEZ ROA

Advanced Materials

Hee-Dae Lim

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences

Jared Ordway

Revista MVZ Córdoba

Alejandro Fabricio Ceballos

Samanta colossi

Journal of Governance, Taxation and Auditing

deny larasdiputra

See More Documents Like This

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Book cover

International Symposium on Intelligent Manufacturing and Service Systems

IMSS 2023: Advances in Intelligent Manufacturing and Service System Informatics pp 675–682 Cite as

Mathematical Models for the Reviewer Assignment Problem in Project Management and a Case Study

  • Zeynep Rabia Hosgor 13 ,
  • Elifnaz Ozbulak 13 ,
  • Elif Melis Gecginci 13 &
  • Zeynep Idil Erzurum Cicek 13  
  • Conference paper
  • First Online: 02 October 2023

299 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Project management is a critical process for every institution and/or organization. This process should be managed as best as possible in order to manage resources and time well and at the same time achieve successful results. One of the reasons that make project management difficult is the increase in project proposals with the increase in reading rates and incentives. The evaluation process of the project proposals includes the assignment of an expert who will evaluate the project. This stage is solved with reviewer assignment problems in the literature. When the literature is examined, it is seen that the general aim of reviewer assignment problems is to maximize the degree of reviewer-project match. This study, in addition to the literature, it is aimed to minimize the evaluation time of the reviewers’ project proposals and to ensure a balanced distribution among the reviewers. When we look at the results of the test problems for this study, which has two objectives, maximum matching degree and minimum evaluation time, it is seen that the objectives have been met. In this way, the assignment, which was made manually and caused a waste of time, was completed in a fair and reliable way.

  • project management
  • reviewer assignment problem
  • mathematical model
  • optimization

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Hartvigsen, D., Wei, J.C.: The conference paper-reviewer assignment problem. Decis. Sci. 30 (3), 865–876 (1999)

Article   Google Scholar  

Xinlian, L., Watanabe, T.: Automatic paper-to-reviewer assignment, based on the matching degree of the reviewers. Procedia Comput. Sci. 22 , 633–642 (2013)

Liu, O., Wang, J., Ma, J., Sun, Y.: An intelligent decision support approach for reviewer assignment in R&D project selection. Comput. Ind. 76 , 1–10 (2015)

Pradhan, D.K., Chakrabot, J., Choudhary, P., Nandi, S.: An automated conflict of interest based greedy approach for conference paper assignment system. J. Informetrics 14 (2), 101022 (2020)

Kat, B.: An algorithm and a decision support system for the panelist assignment problem: the case of TUBITAK. J. Fac. Eng. Archit. Gazi Univ. 36 (1), 69–87 (2021)

Google Scholar  

Download references

Acknowledgments

This study is supported by TUBITAK 2209-A - Research Project Support Programme for Undergraduate Students and Eskisehir Technical University, Scientific Research Projects Committee (22LOP392).

Author information

Authors and affiliations.

Eskisehir Technical University/Industrial Engineering, Eskisehir, Turkey

Zeynep Rabia Hosgor, Elifnaz Ozbulak, Elif Melis Gecginci & Zeynep Idil Erzurum Cicek

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Zeynep Rabia Hosgor .

Editor information

Editors and affiliations.

Istanbul Medipol University, Istanbul, Türkiye

Department of Industrial Engineering, Sakarya University, Serdivan, Sakarya, Türkiye

Faculty of Applied Sciences, Sakarya University of Applied Sciences, Kaynarca, Sakarya, Türkiye

Caner Erden

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper.

Hosgor, Z.R., Ozbulak, E., Gecginci, E.M., Cicek, Z.I.E. (2024). Mathematical Models for the Reviewer Assignment Problem in Project Management and a Case Study. In: Şen, Z., Uygun, Ö., Erden, C. (eds) Advances in Intelligent Manufacturing and Service System Informatics. IMSS 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-6062-0_63

Download citation

DOI : https://doi.org/10.1007/978-981-99-6062-0_63

Published : 02 October 2023

Publisher Name : Springer, Singapore

Print ISBN : 978-981-99-6061-3

Online ISBN : 978-981-99-6062-0

eBook Packages : Engineering Engineering (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

NYU Scholars Logo

  • Help & FAQ

Traffic assignment: A survey of mathematical models and techniques

  • Civil and Urban Engineering
  • Center for Interacting Urban Networks

Research output : Chapter in Book/Report/Conference proceeding › Chapter

This chapter presents the fundamentals of the theory and techniques of traffic assignment problem. It first presents the steady-state traffic assignment problem formulation which is also called static assignment, followed by Dynamic Traffic Assignment (DTA), where the traffic demand on the network is time varying. The static assignment problem is shown in a mathematical programming setting for two different objectives to be satisfied. The first one where all users experience same travel times in alternate used routes is called user-equilibrium and another setting called system optimum in which the assignment attempts to minimize the total travel time. The alternate formulation uses variational inequality method which is also presented. Dynamic travel routing problem is also reviewed in the variational inequality setting. DTA problem is shown in discrete and continuous time in terms of lumped parameters as well as in a macroscopic setting, where partial differential equations are used for the link traffic dynamics. A Hamilton–Jacobi- based travel time dynamics model is also presented for the links and routes, which is integrated with the macroscopic traffic dynamics. Simulation-based DTA method is also very briefly reviewed. This chapter is taken from the following Springer publication and is reproduced here, with permission and with minor changes: Pushkin Kachroo, and Neveen Shlayan, “Dynamic traffic assignment: A survey of mathematical models and technique,” Advances in Dynamic Network Modeling in Complex Transportation Systems (Editor: Satish V. Ukkusuri and Kaan Özbay) Springer New York, 2013. 1-25.

Publication series

Asjc scopus subject areas.

  • Control and Systems Engineering
  • Automotive Engineering
  • Aerospace Engineering
  • Industrial and Manufacturing Engineering

Access to Document

  • 10.1007/978-3-319-69231-9_2

Other files and links

  • Link to publication in Scopus
  • Link to the citations in Scopus

Fingerprint

  • Mathematical models Engineering & Materials Science 100%
  • Travel time Engineering & Materials Science 56%
  • Time varying networks Engineering & Materials Science 25%
  • Mathematical programming Engineering & Materials Science 21%
  • User experience Engineering & Materials Science 18%
  • Partial differential equations Engineering & Materials Science 18%
  • Dynamic models Engineering & Materials Science 14%

T1 - Traffic assignment

T2 - A survey of mathematical models and techniques

AU - Kachroo, Pushkin

AU - Özbay, Kaan M.A.

N1 - Publisher Copyright: © Springer International Publishing AG, part of Springer Nature 2018.

N2 - This chapter presents the fundamentals of the theory and techniques of traffic assignment problem. It first presents the steady-state traffic assignment problem formulation which is also called static assignment, followed by Dynamic Traffic Assignment (DTA), where the traffic demand on the network is time varying. The static assignment problem is shown in a mathematical programming setting for two different objectives to be satisfied. The first one where all users experience same travel times in alternate used routes is called user-equilibrium and another setting called system optimum in which the assignment attempts to minimize the total travel time. The alternate formulation uses variational inequality method which is also presented. Dynamic travel routing problem is also reviewed in the variational inequality setting. DTA problem is shown in discrete and continuous time in terms of lumped parameters as well as in a macroscopic setting, where partial differential equations are used for the link traffic dynamics. A Hamilton–Jacobi- based travel time dynamics model is also presented for the links and routes, which is integrated with the macroscopic traffic dynamics. Simulation-based DTA method is also very briefly reviewed. This chapter is taken from the following Springer publication and is reproduced here, with permission and with minor changes: Pushkin Kachroo, and Neveen Shlayan, “Dynamic traffic assignment: A survey of mathematical models and technique,” Advances in Dynamic Network Modeling in Complex Transportation Systems (Editor: Satish V. Ukkusuri and Kaan Özbay) Springer New York, 2013. 1-25.

AB - This chapter presents the fundamentals of the theory and techniques of traffic assignment problem. It first presents the steady-state traffic assignment problem formulation which is also called static assignment, followed by Dynamic Traffic Assignment (DTA), where the traffic demand on the network is time varying. The static assignment problem is shown in a mathematical programming setting for two different objectives to be satisfied. The first one where all users experience same travel times in alternate used routes is called user-equilibrium and another setting called system optimum in which the assignment attempts to minimize the total travel time. The alternate formulation uses variational inequality method which is also presented. Dynamic travel routing problem is also reviewed in the variational inequality setting. DTA problem is shown in discrete and continuous time in terms of lumped parameters as well as in a macroscopic setting, where partial differential equations are used for the link traffic dynamics. A Hamilton–Jacobi- based travel time dynamics model is also presented for the links and routes, which is integrated with the macroscopic traffic dynamics. Simulation-based DTA method is also very briefly reviewed. This chapter is taken from the following Springer publication and is reproduced here, with permission and with minor changes: Pushkin Kachroo, and Neveen Shlayan, “Dynamic traffic assignment: A survey of mathematical models and technique,” Advances in Dynamic Network Modeling in Complex Transportation Systems (Editor: Satish V. Ukkusuri and Kaan Özbay) Springer New York, 2013. 1-25.

UR - http://www.scopus.com/inward/record.url?scp=85047219067&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047219067&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-69231-9_2

DO - 10.1007/978-3-319-69231-9_2

M3 - Chapter

AN - SCOPUS:85047219067

T3 - Advances in Industrial Control

BT - Advances in Industrial Control

PB - Springer International Publishing

COMMENTS

  1. Assignment problem

    The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment. Otherwise, it is called unbalanced assignment. [1] If the total cost of the assignment for all ...

  2. Assignment Problem

    This lecture discusses the assignment problemsOther videos @DrHarishGarg Assignment Problem - Mathematical Models: Link: https://youtu.be/OX1ssZez_sYHungaria...

  3. Assignment Problem: Meaning, Methods and Variations

    After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations. Meaning of Assignment Problem: An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total ...

  4. Operations Research with R

    Assignment Problem. The assignment problem is a special case of linear programming problem; it is one of the fundamental combinational optimization problems in the branch of optimization or operations research in mathematics. Its goal consists in assigning m resources (usually workers) to n tasks (usually jobs) one a one to one basis while ...

  5. mathematical model of an assignment/scheduling problem

    2. I am solving a scheduling problem and I am able to abstract it into an assignment problem of assigning 45 machines to 42 jobs. the assignment problem was given as having 14 jobs, each with 3 tasks and 5 available machines that can be used for no more than 9 tasks. so 14 times 3 is 42 and 5 times 9 is 45, my constraints are that no two shifts ...

  6. Assignment Problem in Linear Programming : Introduction and Assignment

    The above definition can be developed into mathematical model as follows: Determine x ij > 0 (i, j = 1,2, 3…n) in order to . Subjected to constraints . and x ij is either zero or one. Method to solve Problem (Hungarian Technique): Consider the objective function of minimization type. Following steps are involved in solving this Assignment ...

  7. Chapter 5: Assignment Problem

    5.1 INTRODUCTION. The assignment problem is one of the special type of transportation problem for which more efficient (less-time consuming) solution method has been devised by KUHN (1956) and FLOOD (1956). The justification of the steps leading to the solution is based on theorems proved by Hungarian mathematicians KONEIG (1950) and EGERVARY ...

  8. PDF Chapter8 ASSIGNMENT PROBLEM

    8.1 Introduction. An assignment problem is a particular case of transportation problem in which a number of operations are to be assigned to an equal number of operators, where each operator performs only one operation. The objective is to minimize overall cost or to maximize the overall profit for a given assignment schedule.

  9. PDF OPERATIONS RESEARCH

    Table 2.1: Cost matrix for assignment problem associated with assigning the ith machine to the jth job. To formulate the assignment problem in mathematical programming terms, we define the activity variables xij = 1; if machine i is assigned to job j 0; otherwise Then the mathematical model for the assignment problem can be stated as Minimize ...

  10. Assignment problem

    The problem of optimally assigning $ m $ individuals to $ m $ jobs. It can be formulated as a linear programming problem that is a special case of the transport problem : (destinations or demand), where $ x _ {ij } \geq 0 $ and $ \sum a _ {i} = \sum b _ {j} $, which is called the balance condition. The assignment problem arises when $ m = n ...

  11. PDF CHAPTER 15 TRANSPORTATION AND ASSIGNMENT PROBLEMS

    7. Identify the relationship between assignment problems and transportation problems. 8. Formulate a spreadsheet model for an assignment problem from a description of the problem. 9. Do the same for some variants of assignment problems. 10. Give the name of an algorithm that can solve huge assignment problems that are well

  12. A linear Programming Formulation of Assignment Problems

    history of sophisticated mathematical techniques, many of which built on linear programming for generating a global view of large, complex optimization problems [5]. 2. Mathemtical LP Model for assignment problem Some linear programming models for the assignment problem is presented .It is assumed that the cost (or time) for every

  13. Definition and formulation of Assignment Problem

    Definition and formulation. Consider the problem of assigning n jobs to n machines (one job to one machine). Let Cij be the cost of assigning ith job to the jth machine and xij represents the assignment of ith job to the jth machine. xij is missing in any cell means that no assignment is made between the pair of job and machine. (i.e) xij = 0.

  14. Quadratic assignment problem

    The Quadratic Assignment Problem (QAP), discovered by Koopmans and Beckmann in 1957, is a mathematical optimization module created to describe the location of invisible economic activities. An NP-Complete problem, this model can be applied to many other optimization problems outside of the field of economics.

  15. (PDF) A New Method to Solve Assignment Models

    The aims of this paper is to clarify the theoretical aspects of the assignment problem and provide customization model that reduces the cost of resource allocation (Source) to a number of points ...

  16. Assignment problems: A golden anniversary survey

    The mathematical. Models with multiple tasks per agent. One type of problem that allows or requires assigning the same agent to more than one task, the multiple bottleneck assignment problem [2], was discussed in Section 2.10, when the categorized assignment problem was considered.

  17. What is Assignment Problem

    Assignment Problem is a special type of linear programming problem where the objective is to minimise the cost or time of completing a number of jobs by a number of persons. The assignment problem in the general form can be stated as follows: "Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to ...

  18. Lesson 8. INTRODUCTION AND MATHEMATICAL FORMULATION

    8.3 Mathematical Formulation of Assignment Problem. Using the notations described above, the assignment problem consist of finding the values of Xij in order to minimize the total cost. where Xij denotes the jth job to be assigned to the ith person. An assignment problem could thus be solved by Simplex Method.

  19. (PDF) Modeling and solving a real-life assignment problem at

    The efficiency of the proposed algorithm is illustrated on real-life data from the Law School of Belgrade University. 2. The problem and its mathematical model Consider the following problem of assigning students to exams during an examination period: In an examination period we are given a set of subjects for which exams should be realised.

  20. PDF Solving The Assignment Problems Directly Without Any Iterations

    The assignment problem is a standard topic discussed in operations research textbooks [8] and [10]. It is an important subject, put forward immediately after the transportation problem, is the assignment problem. This is particularly important in the theory of decision making. The assignment problem is one of the earliest

  21. An Alternative Approach for Solving Unbalanced Assignment Problems

    An Alternative Approach for Solving Unbalanced Assignment Problems 47 Mathematical Formulation of Assignment Problem As the assignment problem is a particular case of the transportation problem, it can be formulated as a linear programming problem (LPP). Suppose there are n tasks to be performed by n agents. Each task must be

  22. Mathematical Models for the Reviewer Assignment Problem in Project

    In the first model given above, the I represent the set of the reviewers, while the J represents the set of the project proposals, defense and final report.C ij shows the degree of matching of the reviewer i with the project j. x ij is a binary variable that takes the value 1 if the reviewer i is assigned to project j and 0 otherwise. q j indicates the degree of difficulty according to the ...

  23. Traffic assignment: A survey of mathematical models and techniques

    The static assignment problem is shown in a mathematical programming setting for two different objectives to be satisfied. The first one where all users experience same travel times in alternate used routes is called user-equilibrium and another setting called system optimum in which the assignment attempts to minimize the total travel time.