Climate Change Impacts

Explore the impacts of climate change with our effects of climate change essay. Learn more about climate change causes, effects, and solutions with the help of our sample. Keep reading to gain inspiration for your essay on climate change and its impact.

Effects of Climate Change: Essay Conclusion

Climate change, climate change impacts, managing climate change, effects of climate change: essay introduction.

It is doubtless that global change has become one the challenges, which encompasses a wide range of human life, including social and economical aspects of human life. Research has indicated that climate change will continue affecting the world as long as proper measures are not taken to protect the environment.

In this line of thought, human activities have been widely blamed for escalating effects of climate change around the world (Hillel & Rosenzweig 2010). Only time will tell whether taming climate change is possible or not.

In this regard, this assessment covers the impact of climate change in our lives today even as world leaders burn midnight oil to develop strategies, aimed at taming the scourge. This proposal topic has an array of benefits, especially in understanding the fatal nature of climate change.

It will mainly focus on the effects of climate change and make proposals on how to counteract the effects of climate together some of the preventive measures being considered by international leaders.

Through literature review, this project will compare different views as argued by different authors in order to synthesize the issue with varying view points. This will be crucial in capturing the main objective of the projects, which revolves around the analysis of the effects of climate change in the world today.

How is climate change defined? Although different environmental experts tend to have different definitions, the Australian Government defines climate change as the weather pattern observed for several years. These changes are mainly caused by human activities, which negatively impact the environment.

With reference to the Intergovernmental Panel on Climate Change (IPCC) report released in the year 2007, climate change is no longer a myth, but a reality, whose impact has continually escalated from 1950s, mainly due to rising levels of greenhouse gases into the atmosphere.

This implies that human activities have significantly contributed this environmental scourge, which continues to affect most parts of the world. The IPCC report was a representation of the world view on climate change, collected from various scientific journals published around the world (Australian Government 2012).

The Australian Department of Climate Change and Energy Efficiency affirms that there is enough evidence to support the fact that the climate system of the earth has continuously been warming. Some of the observations made include the rising level of air in the world and high ocean temperatures. Others are the rising sea level, constant melting of snow and ice in most parts of the world.

One important fact to note about climate change is that it involves the rising temperatures of the climate system holistically, including all the oceans, atmosphere and the cryosphere. These findings concluded that the climate system is in a heating mode.

Even as we review other people’s work, it is important to note that climate change is more than mere global warming as perceived by most people. From scientific revelation, the climate will be varied broadly especially if the warming continues uncontrollably (Australian Government 2012). As a result, the world is likely to experience irregular rainfall patterns, occurrence of severe climatic events like heavy currents and droughts among others.

The impact of climate change has been felt in every part of the world. According to United Nations Framework Convention on Climate Change (UNFCCC), Asia, Africa and Latin America are among the regions of the world, which have severely been affected by the scourge. In a 2010 survey carried out by Climate Change Secretariat, Africa is under the pressure of climate change and remains vulnerable to these effects.

Unlike most parts of the world, Africa experiences varying climatic changes. Common occurrences in Africa are severe droughts and floods, which have had negative implications on the continent’s economy (UNFCCC 2010).

The two events are widely known to predispose famine and overall interference with the socio-well being of the society. According to the UNFCCC’s analysis, close to a third of Africa’s population inhabit drought-prone regions, while more than two million remain vulnerable to drought every year (UNFCCC 2010).

In understanding the implication of climate change in Africa, the survey found out that the issue of climate change is intertwined with several factors, which contribute to its escalation across the continent.

Some of these factors include poverty, weak institutions, illiteracy, lack of information and technology, limited infrastructure, poor accessibility to resources, poor management and conflicts. In addition, there is widespread exploitation of land, which remains a major threat to the climate.

Due to pressure on farming land, most farmers exert pressure through over-cultivation and deforestation. In addition, other factors like dunes and storms continue posing more negative threats to the environment and human beings (UNFCCC 2010).

As a result of these events, the continent experiences drought and overall scarcity of water. Due to this emerging trend, Africa is likely to face shortage of rainfall and overall scarcity of water. With Africa having several trans-boundary river basins, the continent is likely to experience conflicts over these basins. Another important aspect captured in the report is agriculture (UNFCCC 2010).

Since most subsistence farmers in Africa depend on rainfall and irrigation, the sector has been affected by insufficient supply in most Sub-Saharan regions. Besides this, UNFCCC notes that climate change has resulted into loss of agricultural land and a drop in subsistence crop production. With a good percentage of the population under the threat of starvation, climate change has undoubtedly led to escalation of insufficient food supply.

It is amazing to note that climate change has also contributed to the spread of some diseases like malaria, tuberculosis and diarrhea in most parts of Africa. As stated by the UNFCCC, there has been a shift in the distribution of disease vectors.

For instance, migration of mosquitoes to regions of higher altitude is likely to expose people in such regions to the risk of contracting malaria (UNFCCC 2010). Additionally, climate change is likely to result into negative impact on African ecosystems and habitats, which are already threatened by these changes. Due to reduced habitat and changing climatic conditions some species are likely to move to more tolerable regions.

In this line of though Robert Watson, Marufu Zinyowera and Richard Moss found out that climate change can have severe effects on human health. In a research carried out in 1998, the three reiterated that human health may be affected as a result of heat-stress mortality, urban air pollution and vector-borne diseases, which could be favored as a result of change in temperature or rainfall in a given ecosystem (Watson, Zinyowera & Moss 1998, p. 7).

Additionally, Watson, Zinyowera and Moss argued that these effects are commonly felt in developing countries, where lives are lost, communities affected and the cost in medical care rises due to high prevalence of some health complications.

With regard to the impact of climate change on biodiversity, Watson, Zinyowera and Moss, agree with UNFCCC’s findings. In their 1998 survey, the three argued that all ecosystems play a fundamental role in the society (Watson, Zinyowera & Moss 1998).

For instance, they are a source of goods and services to any society. In particular, these goods and services include provision of food, processing and storage of carbon and other nutrients, assimilation of wastes and provision of recreation and tourism opportunities among others.

As a result, they argued that climatic changes are known to alter the geographical local of various ecological systems, including the presence of certain species and their ability to remain productive to support the society. According to their findings, ecological systems are essentially dynamic and are commonly affected by climatic variations of whichever magnitude.

Nevertheless, the extreme to which the climate varies determines the changes, which occur in the ecosystem. In addition, the three authors noted the high level of carbon dioxide in the atmosphere was a major contributing factor towards climate changes taking place in the world today (Watson, Zinyowera & Moss 1998).

Besides influencing the ecosystems, Watson, Zinyowera and Moss noted that climate change may also have secondary effects, say, variations in soil characteristics and interference of regimes. These include diseases, pests and diseases, which are likely to support the existence of some species favorably than others (Watson, Zinyowera & Moss 1998).

This will automatically affect the survival of some species and the overall population of organisms. Similarly, they argued that that climate change has direct impact on food production in most parts of the world. According to the 1998 survey, the type of agricultural systems in place determines the manner in which crop productivity is affected by changes in climatic conditions and patterns.

Like many other scholars, Barrie Pittock spent his life studying the environment and how it is affected by changes in climate. In his 2009, survey, Climate Change: The Science, Impacts and Solutions , Pittock outlined several reasons why there is cause for alarm, regarding climate change in the world today.

According to Pittock, the UNFCCC seeks to reduce the impact of climate change by being on the frontline in the war against global warming (Pittock 2009, p. 107). He further noted that human-induced climate change is a major security threat in the world today. This stance is mainly backed by the well-known effects of climate change described by the UNFCCC and the IPCC.

Moreover, Pittock reiterated that climate change has complex effects in the world today, citing a number of examples. In cases where there is high rainfall resulting from climate change, the world may experience direct or indirect implications.

This could be seen through high or low crop yield, depending on the type of soil or crop. On the other hand, indirect effects may refer to changes in demand and supply, emanating from either low or high yield, depending on other factors. He therefore agreed with several authors and researchers who have enumerated implications of climate change on the environment and human life at large.

For example, Pittock noted that climate change has been a major cause of water shortages in most parts of the world (Pittock 2009, p. 108). He however attributed this to a number of factors, including precipitation decrease in some regions, high rates of evaporation in the world and general loss of glaciers.

Economically, Pittock noted that climate change affects the economic progress of a nation since resources may be diverted to disease control instead of advancing developing projects.

Moreover, it is important to note that most of the countries, which suffer severely as a result of climate change, are poor nations that lack stable economic muscles. As a result, there is a likelihood of richer countries becoming stronger as developing economies weaken further. Lastly, Pittock noted that some of the threats emanating from climate change cause irreversible damages, which end up haunting human beings forever (Pittock 2009, p. 109).

With reference to a number of scholars who have done research on the impact of climate change, it is evident that human activities have a role in the escalation of these effects. In his 2010 survey, Martin Kernan noted that there is a relation between human activities and global warming.

As a result of this global relationship, the world has registered an increase in the concentration of carbon dioxide in the atmosphere. In this survey, he noted that the increase in green house gases is rampant in the northern hemisphere than any other part of the world.

As a result of high temperatures, Martin underscore that the changes have impact on the composition of natural ecosystems, regarding species population and their ability to survive (Kernan 2010, p. 15). What is most evident in Martin’s research is his comparison of the current state of the climate, to what was known hundreds of years ago.

Climate change also affects the quality of water in the United States. According to a research carried out by Robert Mendelsohn and James Neumann, water plays an important role in the life of a human being. Some of these functions include but not limited to power generation, food production, recreation and ecological processes (Mendelsohn & Mendelsohn 2004, p. 133).

However, this is only possible if the water is available and of good quality. Thus, changes in spatial distribution and quality can have direct social and economic effects on the society.

This alteration may occur as a result of increased concentration in greenhouse gases. Climate change can be detected by observing variation in temperatures, frequent and intense droughts and altered precipitation patterns among other factors (Mendelsohn & Mendelsohn 2004, p. 133).

The findings on the impact of climate change on the quality of water have also been pursued by Jan Dam, who argued that natural systems are usually sensitive to changes in climate variation. Hydrological quality is mainly affected by the temperature or concentration of water (Dam 2003, p. 95).

When oceans and other water bodies overheat because of high temperatures, this may result into negative impact on aquatic animals, which adapt to certain hydrological temperatures. Similarly, the quality of water is always altered when gases like carbon dioxide are dissolved in water basins. This may affect the mix of species present in a given ecosystem.

Based on the impact of climate change, it is doubtless that management of the risks has to be effected promptly before they become fatal and irreversible. One of the ways of controlling climate change is through reduction of greenhouse gases in the atmosphere.

This can be achieved through several ways, which minimize the emission of carbon dioxide into the atmosphere (McCarthy 2001, p. 222). According to James McCarthy, this can be realized by adopting alternative sources of energy unlike how most economies rely of oil and petroleum products as the main source of energy. Additionally, good methods of farming are important to maintain the value of the environment for sustainable support.

Use of international legislations is also necessary in ensuring that rich countries do not exploit developing nations as they are major contributors of effluents into the atmosphere (Hillel & Rosenzweig 2010). Above all, the fight against climate change calls for environmental campaign, which requires the efforts of everybody in the world.

From the above review of literature, it is clear that climate change is a major socio and environmental issue affecting the world today. Mainly caused by human activities, climate change poses a chain of challenges and threats to the environment.

For instance, there are several diseases, which affect human beings as a result of climate change (Rosenberg & Edmonds 2005). Of importance is also the alteration of the quality of the natural environment, which affects biodiversity. This has led to the extinction of some species, while others have increased exponentially in numbers.

Moreover, it is imperative to note that some of the occurrences, which are considered to be natural, are caused by climate change. Common ones include floods and draughts (Faure, Gupta & Nentjes 2003, p. 340).

Most of these calamities continue to be recognized as natural disasters yet they can be controlled using simple mitigation measures. In most cases, adoption of renewable sources of energy has always been considered to be the most important way of saving the world from climate change. Although it is a complex issue to handle, joint global efforts are important in making progress.

Australian Government 2012, Impacts of climate change .

Dam, J 2003, Impacts of Climate Change and Climate Variability on Hydrological Regimes , Cambridge University Press, Cambridge, England.

Faure, M, Gupta, J & Nentjes, A 2003, Climate Change and the Kyoto Protocol: The Role of Institutions and Instruments to Control Global Change , Edward Elgar Publishing, United Kingdom.

Hillel, D & Rosenzweig, C 2010, Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation , World Scientific, Singapore.

Kernan, M 2010, Climate Change Impacts on Freshwater Ecosystems , John Wiley & Sons, New Jersey.

Mendelsohn, R & Neumann, J 2004, The Impact Of Climate Change On The United States Economy , Cambridge University Press, Cambridge, England.

Pittock, B 2009, Climate Change: The Science, Impacts and Solutions , Csiro Publishing, Sydney.

Rosenberg, N, & Edmonds, J 2005, Climate Change Impacts for the Conterminous USA: An Integrated Assessment , Springer, New York.

UNFCCC 2010, Climate Change: Impacts, Vulnerabilities and Adaptation In Developing Countries.

Watson, R, Zinyowera, M & Moss, R 1998, The Regional Impacts of Climate Change: An Assessment of Vulnerability , Cambridge University Press, Cambridge, England.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2020, January 8). Climate Change Impacts. https://studycorgi.com/climate-change-impacts/

"Climate Change Impacts." StudyCorgi , 8 Jan. 2020, studycorgi.com/climate-change-impacts/.

StudyCorgi . (2020) 'Climate Change Impacts'. 8 January.

1. StudyCorgi . "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

Bibliography

StudyCorgi . "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

StudyCorgi . 2020. "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

This paper, “Climate Change Impacts”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: October 7, 2022 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

A polar bear stands on a small iceberg

Russell Millner/Alamy

Defend Our Planet and Most Vulnerable Species

Your donation today will be triple-matched to power NRDC’s next great chapter in protecting our ecosystems and saving imperiled wildlife.

What Are the Effects of Climate Change?

A rapidly warming planet poses an existential threat to all life on earth. Just how bad it gets depends on how quickly we act.

An aerial view of floodwaters overtaking a cluster of buildings

An area flooded by Super Typhoon Noru in the Bulacan Province of the Philippines, September 26, 2022

Rouelle Umali/Xinhua via Getty Images

A headshot of Courtney Lindwall

  • Share this page block

Climate change is our planet’s greatest existential threat . If we don’t limit greenhouse gas emissions from the burning of fossil fuels, the consequences of rising global temperatures include massive crop and fishery collapse, the disappearance of hundreds of thousands of species, and entire communities becoming uninhabitable. While these outcomes may still be avoidable, climate change is already causing suffering and death. From raging wildfires and supercharged storms, its compounding effects can be felt today, outside our own windows.

Understanding these impacts can help us prepare for what’s here, what’s avoidable, and what’s yet to come, and to better prepare and protect all communities. Even though everyone is or will be affected by climate change, those living in the world’s poorest countries—which have contributed least to the problem—are the most climate-vulnerable. They have the fewest financial resources to respond to crises or adapt, and they’re closely dependent on a healthy, thriving natural world for food and income. Similarly, in the United States, it is most often low-income communities and communities of color that are on the frontlines of climate impacts. And because climate change and rising inequality are interconnected crises, decision makers must take action to combat both—and all of us must fight for climate justice. Here’s what you need to know about what we’re up against.

Effects of climate change on weather

Effects of climate change on the environment, effects of climate change on agriculture, effects of climate change on animals, effects of climate change on humans, future effects of climate change.

As global temperatures climb, widespread shifts in weather systems occur, making events like droughts , hurricanes , and floods more intense and unpredictable. Extreme weather events that may have hit just once in our grandparents’ lifetimes are becoming more common in ours. However, not every place will experience the same effects: Climate change may cause severe drought in one region while making floods more likely in another.

Already, the planet has warmed 1.1 degrees Celsius (1.9 degrees Fahrenheit) since the preindustrial era began 250 years ago, according to the Intergovernmental Panel on Climate Change (IPCC) . And scientists warn it could reach a worst-case scenario of 4 degrees Celsius (7.2 degrees Fahrenheit) by 2100 if we fail to tackle the causes of climate change —namely, the burning of fossil fuels (coal, oil, and gas) .

essay on consequences of climate change

Tokyo during a record-breaking heat wave, August 13, 2020

The Yomiuri Shimbun via AP Images

Higher average temperatures

This change in global average temperature—seemingly small but consequential and climbing—means that, each summer, we are likely to experience increasingly sweltering heat waves. Even local news meteorologists are starting to connect strings of record-breaking days to new long-term trends, which are especially problematic in regions where infrastructure and housing have not been built with intensifying heat in mind. And heat waves aren’t just uncomfortable—they’re the leading cause of weather-related fatalities in the United States.

Longer-lasting droughts

Hotter temperatures increase the rate at which water evaporates from the air, leading to more severe and pervasive droughts . Already, climate change has pushed the American West into a severe “megadrought”—the driest 22-year stretch recorded in at least 1,200 years—shrinking drinking water supplies, withering crops , and making forests more susceptible to insect infestations. Drought can also create a positive feedback loop in which drier soil and less plant cover cause even faster evaporation.

More intense wildfires

This drier, hotter climate also creates conditions that fuel more vicious wildfire seasons—with fires that spread faster and burn longer—putting millions of additional lives and homes at risk. The number of large wildfires doubled between 1984 and 2015 in the western United States. And in California alone, the annual area burned by wildfires increased 500 percent between 1972 and 2018.

Multiple rafts and boats travel through floodwaters on a multi-lane roadway, along with people walking in the waist-high water

Evacuation after Hurricane Harvey in Houston, August 28, 2017

David J. Phillip/AP Photo

Stronger storms

Warmer air also holds more moisture, making tropical cyclones wetter, stronger, and more capable of rapidly intensifying. In the latest report from the IPCC , scientists found that daily rainfall during extreme precipitation events would increase by about 7 percent for each degree Celsius of global warming, increasing the dangers of flooding . The frequency of severe Category 4 and 5 hurricanes is also expected to increase. In 2017, Hurricane Harvey, a devastating Category 4 storm, dumped a record 275 trillion pounds of rain and resulted in dozens of deaths in the Houston area.

From the poles to the tropics, climate change is disrupting ecosystems. Even a seemingly slight shift in temperature can cause dramatic changes that ripple through food webs and the environment.

Small chunks of ice melting in a body of water, with low, snowy mountains in the background

The lake at Jökulsárlón, a glacial lagoon in Iceland, which has grown because of continued glacial melting

Eskinder Debebe/UN Photo

Melting sea ice

The effects of climate change are most apparent in the world’s coldest regions—the poles. The Arctic is heating up twice as fast as anywhere else on earth, leading to the rapid melting of glaciers and polar ice sheets, where a massive amount of water is stored. As sea ice melts, darker ocean waters that absorb more sunlight become exposed, creating a positive feedback loop that speeds up the melting process. In just 15 years, the Arctic could be entirely ice-free in the summer.

Sea level rise

Scientists predict that melting sea ice and glaciers, as well as the fact that warmer water expands in volume, could cause sea levels to rise as much as 6.6 feet by the end of the century, should we fail to curb emissions. The extent (and pace) of this change would devastate low-lying regions, including island nations and densely populated coastal cities like New York City and Mumbai.

But sea level rise at far lower levels is still costly, dangerous, and disruptive. According to the 2022 Sea Level Rise Technical Report from the National Ocean Service, the United States will see a foot of sea level rise by 2050, which will regularly damage infrastructure, like roads, sewage treatment plants, and even power plants . Beaches that families have grown up visiting may be gone by the end of the century. Sea level rise also harms the environment, as encroaching seawater can both erode coastal ecosystems and invade freshwater inland aquifers, which we rely on for agriculture and drinking water. Saltwater incursion is already reshaping life in nations like Bangladesh , where one-quarter of the lands lie less than 7 feet above sea level.

People with umbrellas walk on a street through ankle-deep water

A waterlogged road, caused by rainstorm and upstream flood discharge, in the Shaoguan, Guangdong Province of China, June 21, 2022

Stringer/Anadolu Agency via Getty Images

In addition to coastal flooding caused by sea level rise, climate change influences the factors that result in inland and urban flooding: snowmelt and heavy rain. As global warming continues to both exacerbate sea level rise and extreme weather, our nation’s floodplains are expected to grow by approximately 45 percent by 2100. In 2022, deadly flooding in Pakistan—which inundated as much as a third of the country—resulted from torrential rains mixed with melting glaciers and snow.

Warmer ocean waters and marine heat waves

Oceans are taking the brunt of our climate crisis. Covering more than 70 percent of the planet’s surface, oceans absorb 93 percent of all the heat that’s trapped by greenhouse gases and up to 30 percent of all the carbon dioxide emitted from burning fossil fuels.

Temperature-sensitive fish and other marine life are already changing migration patterns toward cooler and deeper waters to survive, sending food webs and important commercial fisheries into disarray. And the frequency of marine heat waves has increased by more than a third . These spikes have led to mass die-offs of plankton and marine mammals.

To make matters worse, the elevated absorption of carbon dioxide by the ocean leads to its gradual acidification , which alters the fundamental chemical makeup of the water and threatens marine life that has evolved to live in a narrow pH band. Animals like corals, oysters, and mussels will likely feel these effects first, as acidification disrupts the calcification process required to build their shells.

Ecosystem stressors

Land-based ecosystems—from old-growth forests to savannahs to tropical rainforests—are faring no better. Climate change is likely to increase outbreaks of pests, invasive species, and pathogen infections in forests. It’s changing the kinds of vegetation that can thrive in a given region and disrupting the life cycles of wildlife, all of which is changing the composition of ecosystems and making them less resilient to stressors. While ecosystems have the capacity to adapt, many are reaching the hard limits of that natural capacity . More repercussions will follow as temperatures rise.

Climate change appears to be triggering a series of cascading ecological changes that we can neither fully predict nor, once they have enough momentum, fully stop. This ecosystem destabilization may be most apparent when it comes to keystone species that have an outsize- role in holding up an ecosystem’s structure.

An aerial view two people standing in a large field covered by a coffee plants

Coffee plants destroyed by frost due to extremely low temperatures near Caconde in the São Paulo state of Brazil, August 25, 2021

Jonne Roriz/Bloomberg via Getty Images

Less predictable growing seasons

In a warming world, farming crops is more unpredictable—and livestock, which are sensitive to extreme weather, become harder to raise. Climate change shifts precipitation patterns, causing unpredictable floods and longer-lasting droughts. More frequent and severe hurricanes can devastate an entire season’s worth of crops. Meanwhile, the dynamics of pests, pathogens, and invasive species—all of which are costly for farmers to manage—are also expected to become harder to predict. This is bad news, given that most of the world’s farms are small and family-run. One bad drought or flood could decimate an entire season’s crop or herd. For example, in June 2022, a triple-digit heat wave in Kansas wiped out thousands of cows. While the regenerative agriculture movement is empowering rural communities to make their lands more resilient to climate change, unfortunately, not all communities can equitably access the support services that can help them embrace these more sustainable farming tactics.

Reduced soil health

Healthy soil has good moisture and mineral content and is teeming with bugs, bacteria, fungi, and microbes that in turn contribute to healthy crops. But climate change, particularly extreme heat and changes in precipitation, can degrade soil quality. These impacts are exacerbated in areas where industrial, chemical-dependent monoculture farming has made soil and crops less able to withstand environmental changes.

Food shortages

Ultimately, impacts to our agricultural systems pose a direct threat to the global food supply. And food shortages and price hikes driven by climate change will not affect everyone equally: Wealthier people will continue to have more options for accessing food, while potentially billions of others will be plummeted into food insecurity—adding to the billions that already have moderate or severe difficulty getting enough to eat.

A small blue frog sits on a browb leaf.

The poison dart frog’s survival is currently threatened by habitat loss and climate change.

Chris Mattison/Minden Pictures

It’s about far more than just the polar bears: Half of all animal species in the world’s most biodiverse places, like the Amazon rainforest and the Galapagos Islands, are at risk of extinction from climate change. And climate change is threatening species that are already suffering from the biodiversity crisis, which is driven primarily by changes in land and ocean use (like converting wild places to farmland) and direct exploitation of species (like overfishing and wildlife trade). With species already in rough shape—more than 500,000 species have insufficient habitat for long-term survival—unchecked climate change is poised to push millions over the edge.

Climate change rapidly and fundamentally alters (or in some cases, destroys) the habitat that wildlife have incrementally adapted to over millennia. This is especially harmful for species’ habitats that are currently under threat from other causes. Ice-dependent mammals like walruses and penguins, for example, won’t fare well as ice sheets shrink. Rapid shifts in ocean temperatures stress the algae that nourishes coral reefs, causing reefs to starve—an increasingly common phenomenon known as coral bleaching . Disappearing wetlands in the Midwest’s Prairie Pothole Region means the loss of watering holes and breeding grounds for millions of migratory birds. (Many species are now struggling to survive, as more than 85 percent of wetlands have been lost since 1700). And sea level rise will inundate or erode away many coastal habitats, where hundreds of species of birds, invertebrates, and other marine species live.

Many species’ behaviors—mating, feeding, migration—are closely tied to subtle seasonal shifts, as in temperature , precipitation level, and foliage. In some cases, changes to the environment are happening quicker than species are able to adapt. When the types and quantity of plant life change across a region, or when certain species bloom or hatch earlier or later than in the past, it impacts food and water supplies and reverberates up food chains.

A thick smog hangs over a mostly-deserted city street.

Wildfire smoke–filled air in Multnomah County, Oregon, September 16, 2020

Motoya Nakamura/Multnomah County Communications, CC BY NC-ND 4.0

Ultimately, the way climate change impacts weather, the environment, animals, and agriculture affects humanity as well. But there’s more. Around the world, our ways of life—from how we get our food to the industries around which our economies are based—have all developed in the context of relatively stable climates. As global warming shakes this foundation, it promises to alter the very fabric of society. At worst, this could lead to widespread famine, disease, war, displacement , injury, and death. For many around the world, this grim forecast is already their reality. In this way, climate change poses an existential threat to all human life.

Human health

Climate change worsens air quality . It increases exposure to hazardous wildfire smoke and ozone smog triggered by warmer conditions, both of which harm our health, particularly for those with pre-existing illnesses like asthma or heart disease.

Insect-borne diseases like malaria and Zika become more prevalent in a warming world as their carriers are able to exist in more regions or thrive for longer seasons. In the past 30 years, the incidence of Lyme disease from ticks has nearly doubled in the United States, according to the U.S. Environmental Protection Agency (EPA). Thousands of people face injury, illness , and death every year from more frequent or more intense extreme weather events. At a 2-degree Celsius rise in global average temperature, an estimated one billion people will face heat stress risk. In the summer of 2022 alone, thousands died in record-shattering heat waves across Europe. Weeks later, dozens were killed by record-breaking urban flooding in the United States and South Korea—and more than 1,500 people perished in the flooding in Pakistan , where resulting stagnant water and unsanitary conditions threaten even more.

The effects of climate change—and the looming threat of what’s yet to come—take a significant toll on mental health too. One 2021 study on climate anxiety, published in the journal Nature , surveyed 10,000 young people from 10 different countries. Forty-five percent of respondents said that their feelings about climate change, varying from anxiety to powerlessness to anger, impacted their daily lives.

A girl sits on a hospital bed that is covered in blue netting.

A patient with dengue fever, a mosquito-borne disease, in Karachi, Pakistan, where the spread of diseases worsened due to flooding, September 2022

Fareed Khan/AP Photo

Worsening inequity

The climate crisis exacerbates existing inequities. Though wealthy nations, such as the United States, have emitted the lion’s share of historical greenhouse gas emissions, it’s developing countries that may lack the resources to adapt and will now bear the brunt of the climate crisis. In some cases, low-lying island nations—like many in the Pacific —may cease to exist before developed economies make meaningful reductions to their carbon emissions.

Even within wealthier nations, disparities will continue to grow between those rich enough to shield themselves from the realities of climate change and those who cannot. Those with ample resources will not be displaced from their homes by wars over food or water—at least not right away. They will have homes with cool air during heat waves and be able to easily evacuate when a hurricane is headed their way. They will be able to buy increasingly expensive food and access treatment for respiratory illness caused by wildfire smoke. Billions of others can’t—and are paying the highest price for climate pollution they did not produce.

Hurricane Katrina, for example, displaced more than one million people around the Gulf Coast. But in New Orleans , where redlining practices promoted racial and economic segregation, the city’s more affluent areas tended to be located on higher ground—and those residents were able to return and rebuild much faster than others.

Displacement

Climate change will drive displacement due to impacts like food and water scarcities, sea level rise, and economic instability. It’s already happening. The United Nations Global Compact on Refugees recognizes that “climate, environmental degradation and disasters increasingly interact with the drivers of refugee movements.” Again, communities with the fewest resources—including those facing political instability and poverty—will feel the effects first and most devastatingly.

The walls of a small room are pulled down to the studs, with debris and mold visible on the floor.

A flood-damaged home in Queens, New York, December 1, 2021

K.C. Wilsey/FEMA

Economic impacts

According to the 2018 National Climate Assessment, unless action is taken, climate change will cost the U.S. economy as much as $500 billion per year by the end of the century. And that doesn’t even include its enormous impacts on human health . Entire local industries—from commercial fishing to tourism to husbandry—are at risk of collapsing, along with the economic support they provide.

Recovering from the destruction wrought by extreme weather like hurricanes, flash floods, and wildfires is also getting more expensive every year. In 2021, the price tag of weather disasters in the United States totaled $145 billion —the third-costliest year on record, including a number of billion-dollar weather events.

The first wave of impacts can already be felt in our communities and seen on the nightly news. The World Health Organization says that in the near future, between 2030 and 2050, climate change is expected to cause an additional 250,000 deaths per year from things like malnutrition, insect-borne diseases, and heat stress. And the World Bank estimates that climate change could displace more than 140 million people within their home countries in sub-Saharan Africa, South Asia, and Latin America by 2050.

But the degree to which the climate crisis upends our lives depends on whether global leaders decide to chart a different course. If we fail to curb greenhouse gas emissions, scientists predict a catastrophic 4.3 degrees Celsius , (or around 8 degrees Fahrenheit) of warming by the end of the century. What would a world that warm look like? Wars over water. Crowded hospitals to contend with spreading disease. Collapsed fisheries. Dead coral reefs. Even more lethal heat waves. These are just some of the impacts predicted by climate scientists .

Workers move a large solar panel into place in a row on the shore of a lake

Solar panel installation at a floating photovoltaic plant on a lake in Haltern am See, Germany, April 2022

Martin Meissner/AP Photo

Climate mitigation, or our ability to reverse climate change and undo its widespread effects, hinges on the successful enactment of policies that yield deep cuts to carbon pollution, end our dependence on dangerous fossil fuels and the deadly air pollution they generate, and prioritize the people and ecosystems on the frontlines. And these actions must be taken quickly in order to ensure a healthier present day and future. In one of its latest reports, the IPCC presented its most optimistic emissions scenario, in which the world only briefly surpasses 1.5 degrees of warming but sequestration measures cause it to dip back below by 2100. Climate adaptation , a term that refers to coping with climate impacts, is no longer optional ; it’s necessary, particularly for the world’s most vulnerable populations.

By following the urgent warnings of the IPCC and limiting warming, we may be able to avoid passing some of the critical thresholds that, once crossed, can lead to potentially irreversible, catastrophic impacts for the planet, including more warming. These thresholds are known as climate tipping points and refer to when a natural system "tips" into an entirely different state. One example would be Arctic permafrost, which stores carbon like a freezer: As the permafrost melts from warming temperatures, it releases carbon dioxide into the atmosphere.

Importantly, climate action is not a binary pass-fail test. Every fraction of a degree of warming that we prevent will reduce human suffering and death, and keep more of the planet’s natural systems intact. The good news is that a wide range of solutions exist to sharply reduce emissions, slow the pace of warming, and protect communities on the frontlines of climate impacts. Climate leaders the world over—those on major political stages as well as grassroots community activists—are offering up alternative models to systems that prioritize polluters over people. Many of these solutions are rooted in ancestral and Indigenous understandings of the natural world and have existed for millennia. Some solutions require major investments into clean, renewable energy and sustainable technologies. To be successful, climate solutions must also address intersecting crises—like poverty, racism, and gender inequality —that compound and drive the causes and impacts of the climate crisis. A combination of human ingenuity and immense political will can help us get there.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington.

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels. 

A rainbow arches over lush green mountains and wind turbines in a valley

Urge President Biden and Congress to make equitable climate action a top priority in 2024

Related stories.

essay on consequences of climate change

COP27: The Issues, the Tensions, and the Urgent Need for Unity on Climate

essay on consequences of climate change

Mutual Aid and Disaster Justice: “We Keep Us Safe”

essay on consequences of climate change

Climate Change at the Doctor’s Office

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

Climate Change Essay for Students and Children

500+ words climate change essay.

Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ecosystem and ecology. Due to these changes, a number of species of plants and animals have gone extinct.

essay on consequences of climate change

When Did it Start?

The climate started changing a long time ago due to human activities but we came to know about it in the last century. During the last century, we started noticing the climatic change and its effect on human life. We started researching on climate change and came to know that the earth temperature is rising due to a phenomenon called the greenhouse effect. The warming up of earth surface causes many ozone depletion, affect our agriculture , water supply, transportation, and several other problems.

Reason Of Climate Change

Although there are hundreds of reason for the climatic change we are only going to discuss the natural and manmade (human) reasons.

Get the huge list of more than 500 Essay Topics and Ideas

Natural Reasons

These include volcanic eruption , solar radiation, tectonic plate movement, orbital variations. Due to these activities, the geographical condition of an area become quite harmful for life to survive. Also, these activities raise the temperature of the earth to a great extent causing an imbalance in nature.

Human Reasons

Man due to his need and greed has done many activities that not only harm the environment but himself too. Many plant and animal species go extinct due to human activity. Human activities that harm the climate include deforestation, using fossil fuel , industrial waste , a different type of pollution and many more. All these things damage the climate and ecosystem very badly. And many species of animals and birds got extinct or on a verge of extinction due to hunting.

Effects Of Climatic Change

These climatic changes have a negative impact on the environment. The ocean level is rising, glaciers are melting, CO2 in the air is increasing, forest and wildlife are declining, and water life is also getting disturbed due to climatic changes. Apart from that, it is calculated that if this change keeps on going then many species of plants and animals will get extinct. And there will be a heavy loss to the environment.

What will be Future?

If we do not do anything and things continue to go on like right now then a day in future will come when humans will become extinct from the surface of the earth. But instead of neglecting these problems we start acting on then we can save the earth and our future.

essay on consequences of climate change

Although humans mistake has caused great damage to the climate and ecosystem. But, it is not late to start again and try to undo what we have done until now to damage the environment. And if every human start contributing to the environment then we can be sure of our existence in the future.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [ { “@type”: “Question”, “name”: “What is climate change and how it affects humans?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Climate change is a phenomenon that happens because of human and natural reasons. And it is one of the most serious problems that not only affect the environment but also human beings. It affects human in several ways but in simple language, we can say that it causes many diseases and disasters that destroy life on earth.” } }, { “@type”: “Question”, “name”: “Can we stop these climatic changes?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Yes, we can stop these climatic changes but for that, every one of us has to come forward and has to adapt ways that can reduce and control our bad habits that affect the environment. We have to the initiative and make everyone aware of the climatic changes.” } } ] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

the silhouette of people can be seen as a giant glowing earth floats on a lake

  • ENVIRONMENT

How global warming is disrupting life on Earth

The signs of global warming are everywhere, and are more complex than just climbing temperatures.

Our planet is getting hotter. Since the Industrial Revolution—an event that spurred the use of fossil fuels in everything from power plants to transportation—Earth has warmed by 1 degree Celsius, about 2 degrees Fahrenheit.  

That may sound insignificant, but 2023 was the hottest year on record , and all 10 of the hottest years on record have occurred in the past decade.  

Global warming and climate change are often used interchangeably as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems.  

Climate change encompasses not only rising average temperatures but also natural disasters, shifting wildlife habitats, rising seas , and a range of other impacts. All of these changes are emerging as humans continue to add heat-trapping greenhouse gases , like carbon dioxide and methane, to the atmosphere.

What causes global warming?

When fossil fuel emissions are pumped into the atmosphere, they change the chemistry of our atmosphere, allowing sunlight to reach the Earth but preventing heat from being released into space. This keeps Earth warm, like a greenhouse, and this warming is known as the greenhouse effect .  

Carbon dioxide is the most commonly found greenhouse gas and about 75 percent of all the climate warming pollution in the atmosphere. This gas is a product of producing and burning oil, gas, and coal. About a quarter of Carbon dioxide also results from land cleared for timber or agriculture.  

Methane is another common greenhouse gas. Although it makes up only about 16 percent of emissions, it's roughly 25 times more potent than carbon dioxide and dissipates more quickly. That means methane can cause a large spark in warming, but ending methane pollution can also quickly limit the amount of atmospheric warming. Sources of this gas include agriculture (mostly livestock), leaks from oil and gas production, and waste from landfills.  

What are the effects of global warming?  

One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic is warming four times faster than the rest of the planet. This warming reduces critical ice habitat and it disrupts the flow of the jet stream, creating more unpredictable weather patterns around the globe.  

( Learn more about the jet stream. )

A warmer planet doesn't just raise temperatures. Precipitation is becoming more extreme as the planet heats. For every degree your thermometer rises, the air holds about seven percent more moisture. This increase in moisture in the atmosphere can produce flash floods, more destructive hurricanes, and even paradoxically, stronger snow storms.  

The world's leading scientists regularly gather to review the latest research on how the planet is changing. The results of this review is synthesized in regularly published reports known as the Intergovernmental Panel on Climate Change (IPCC) reports.  

A recent report outlines how disruptive a global rise in temperature can be:

  • Coral reefs are now a highly endangered ecosystem. When corals face environmental stress, such as high heat, they expel their colorful algae and turn a ghostly white, an effect known as coral bleaching . In this weakened state, they more easily die.  
  • Trees are increasingly dying from drought , and this mass mortality is reshaping forest ecosystems.
  • Rising temperatures and changing precipitation patterns are making wildfires more common and more widespread. Research shows they're even moving into the eastern U.S. where fires have historically been less common.
  • Hurricanes are growing more destructive and dumping more rain, an effect that will result in more damage. Some scientists say we even need to be preparing for Cat 6 storms . (The current ranking system ends at Cat 5.)

How can we limit global warming?  

Limiting the rising in global warming is theoretically achievable, but politically, socially, and economically difficult.  

Those same sources of greenhouse gas emissions must be limited to reduce warming. For example, oil and gas used to generate electricity or power industrial manufacturing will need to be replaced by net zero emission technology like wind and solar power. Transportation, another major source of emissions, will need to integrate more electric vehicles, public transportation, and innovative urban design, such as safe bike lanes and walkable cities.  

( Learn more about solutions to limit global warming. )

One global warming solution that was once considered far fetched is now being taken more seriously: geoengineering. This type of technology relies on manipulating the Earth's atmosphere to physically block the warming rays of the sun or by sucking carbon dioxide straight out of the sky.

Restoring nature may also help limit warming. Trees, oceans, wetlands, and other ecosystems help absorb excess carbon—but when they're lost, so too is their potential to fight climate change.  

Ultimately, we'll need to adapt to warming temperatures, building homes to withstand sea level rise for example, or more efficiently cooling homes during heat waves.  

For Hungry Minds

Related topics.

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • POLAR REGIONS

You May Also Like

essay on consequences of climate change

Why all life on Earth depends on trees

essay on consequences of climate change

Life probably exists beyond Earth. So how do we find it?

essay on consequences of climate change

For Antarctica’s emperor penguins, ‘there is no time left’

essay on consequences of climate change

Listen to 30 years of climate change transformed into haunting music

essay on consequences of climate change

Polar bears are trying to adapt to a warming Arctic. It’s not working.

  • Environment

History & Culture

  • History Magazine
  • History & Culture
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 16 November 2022

Climate change and human behaviour

Nature Human Behaviour volume  6 ,  pages 1441–1442 ( 2022 ) Cite this article

28k Accesses

2 Citations

62 Altmetric

Metrics details

Climate change is an immense challenge. Human behaviour is crucial in climate change mitigation, and in tackling the arising consequences. In this joint Focus issue between Nature Climate Change and Nature Human Behaviour , we take a closer look at the role of human behaviour in the climate crisis.

In the late 19th century, the scientist (and suffragette) Eunice Newton Foote published a paper suggesting that a build-up of carbon dioxide in the Earth’s atmosphere could cause increased surface temperatures 1 . In the mid-20th century, the British engineer Guy Callendar was the first to concretize the link between carbon dioxide levels and global warming 2 . Now, a century and a half after Foote’s work, there is overwhelming scientific evidence that human behaviour is the main driver of climatic changes and global warming.

essay on consequences of climate change

The negative effects of rising temperatures on the environment, biodiversity and human health are becoming increasingly noticeable. The years 2020 and 2016 were among the hottest since the record keeping of annual surface temperatures began in 1880 (ref. 3 ). Throughout 2022, the globe was plagued by record-breaking heatwaves. Even regions with a naturally warm climate, such as Pakistan or India, experienced some of their hottest days much earlier in the year — very probably a consequence of climate change 4 . According to the National Centers for Environmental Information of the United States, the surface global temperature during the decade leading up to 2020 was +0.82 °C (+1.48 °F) above the 20th-century average 5 . It is clear that we are facing a global crisis that requires urgent action.

During the Climate Change Conference (COP21) of the United Nations in Paris 2015, 196 parties adopted a legally binding treaty with the aim to limit global warming to ideally 1.5 °C and a maximum of 2 °C, compared to pre-industrial levels. A recent report issued by the UN suggests that we are very unlikely to meet the targets of the Paris Agreement. Instead, current policies are likely to cause temperatures to increase up to 2.8 °C this century 6 . The report suggests that to get on track to 2 °C, new pledges would need to be four times higher — and seven times higher to get on track to 1.5 °C. This November, world leaders will meet for the 27th time to coordinate efforts in facing the climate crisis and mitigating the effects during COP27 in Sharm El-Sheikh, Egypt.

This Focus issue

Human behaviour is not only one of the primary drivers of climate change but also is equally crucial for mitigating the impact of the Anthropocene. In 2022, this was also explicitly acknowledged in the report of the Intergovernmental Panel on Climate Change (IPCC). For the first time, the IPCC directly discussed behavioural, social and cultural dynamics in climate change mitigation 7 . This joint Focus highlights some of the aspects of the human factor that are central in the adaptation to and prevention of a warming climate, and the mitigation of negative consequences. It features original pieces, and also includes a curated collection of already published content from across journals in the Nature Portfolio.

Human behaviour is a neglected factor in climate science

In the light of the empirical evidence for the role of human behaviour in climatic changes, it is curious that the ‘human factor’ has not always received much attention in key research areas, such as climate modelling. For a long time, climate models to predict global warming and emissions did not account for it. This oversight meant that predictions made by these models have differed greatly in their projected rise in temperatures 8 , 9 .

Human behaviour is complex and multidimensional, making it difficult — but crucial — to account for it in climate models. In a Review , Brian Beckage and colleagues thus look at existing social climate models and make recommendations for how these models can better embed human behaviour in their forecasting.

The psychology of climate change

The complexity of humans is also reflected in their psychology. Despite an overwhelming scientific consensus on anthropogenic climate change, research suggests that many people underestimate the effects of it, are sceptical of it or deny its existence altogether. In a Review , Matthew Hornsey and Stephan Lewandowsky look at the psychological origins of such beliefs, as well as the roles of think tanks and political affiliation.

Psychologists are not only concerned with understanding and addressing climate scepticism but are also increasingly worried about mental health consequences. Two narrative Reviews address this topic. Neil Adger et al. discuss the direct and indirect pathways by which climate change affects well-being, and Fiona Charlson et al. adopt a clinical perspective in their piece. They review the literature on the clinical implications of climate change and provide practical suggestions for mental health practitioners.

Individual- and system-level behaviour change

To limit global warming to a minimum, system-level and individual-level behaviour change is necessary. Several pieces in this Focus discuss how such change can be facilitated.

Many interventions for individual behaviour change and for motivating environmental behaviour have been proposed. In a Review , Anne van Valkengoed and colleagues introduce a classification system that links different interventions to the determinants of individual environmental behaviour. Practitioners can use the system to design targeted interventions for behaviour change.

Ideally, interventions are scalable and result in system-level change. Scalability requires an understanding of public perceptions and behaviours, as Mirjam Jenny and Cornelia Betsch explain in a Comment . They draw on the experiences of the COVID-19 pandemic and discuss crucial structures, such as data observatories, for the collection of reliable large-scale data.

Such knowledge is also key for designing robust climate policies. Three Comments in Nature Climate Change look at how insights from behavioural science can inform policy making in areas such as natural-disaster insurance markets , carbon taxing and the assignment of responsibility for supply chain emissions .

Time to act

To buck the trend of rising temperatures, immediate and significant climate action is needed.

Natural disasters have become more frequent and occur at ever-closer intervals. The changing climate is driving biodiversity loss, and affecting human physical and mental health. Unfortunately, the conversations about climate change mitigation are often dominated by Global North and ‘WEIRD’ (Western, educated, industrialized, rich and democratic) perspectives, neglecting the views of countries in the Global South. In a Correspondence , Charles Ogunbode reminds us that climate justice is social justice in the Global South and that, while being a minor contributor to emissions and global warming, this region has to bear many of the consequences.

The fight against climate change is a collective endeavour and requires large-scale solutions. Collective action, however, usually starts with individuals who raise awareness and drive change. In two Q&As, Nature Human Behaviour entered into conversation with people who recognized the power of individual behaviour and took action.

Licypriya Kangujam is a 10-year-old climate activist based in India. She tells us how she hopes to raise the voices of the children of the world in the fight against climate change and connect individuals who want to take action.

Wolfgang Knorr is a former academic who co-founded Faculty for a Future to help academics to transform their careers and address pressing societal issues. In a Q&A , he describes his motivations to leave academia and offers advice on how academics can create impact.

Mitigation of climate change (as well as adaptation to its existing effects) is not possible without human behaviour change, be it on the individual, collective or policy level. The contents of this Focus shed light on the complexities that human behaviour bears, but also point towards future directions. It is the duty of us all to turn this knowledge into action.

Foote, E. Amer. J. Sci. 22 , 377–381 (1856).

Google Scholar  

Callendar, G. S. Q. J. R. Meteorol. Soc. 64 , 223–240 (1938).

Article   Google Scholar  

NASA. Vital signs – global temperature. climate.nasa.gov , https://climate.nasa.gov/vital-signs/global-temperature/ (2022).

Zachariah, M. et al. Climate change made devastating early heat in India and Pakistan 30 times more likely. worldweatherattribution.org , https://www.worldweatherattribution.org/wp-content/uploads/India_Pak-Heatwave-scientific-report.pdf (2022).

NOAA National Centers for Environmental Information. Annual 2020 Global Climate Report. ncei.noaa.gov , https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013 (2021).

United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window — Climate Crisis Calls For Rapid Transformation Of Societies (UNEP, 2022).

IPCC. Climate Change 2022: Mitigation of Climate Change (IPCC, 2022).

Calvin, K. & Bond-Lamberty, B. Environ. Res. Lett. 13 , 063006 (2018).

Beckage, B. et al. Clim. Change 163 , 181–188 (2020).

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Climate change and human behaviour. Nat Hum Behav 6 , 1441–1442 (2022). https://doi.org/10.1038/s41562-022-01490-9

Download citation

Published : 16 November 2022

Issue Date : November 2022

DOI : https://doi.org/10.1038/s41562-022-01490-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

essay on consequences of climate change

The Influence of Climate Change on Extreme Environmental Events

Climate change affects global temperature and precipitation patterns. These effects, in turn, influence the intensity and, in some cases, the frequency of extreme environmental events, such as forest fires, hurricanes, heat waves, floods, droughts, and storms.

Climatology, Earth Science, Ecology

Boise National Forest Fire

Research shows human-caused climate change has worsened the risk of extreme weather events like the wildfires of the western United States, such as this forest fire in the Boise National Forest, Idaho.

Photograph by David R. Frazier Photolibrary, Inc./Science Source

Research shows human-caused climate change has worsened the risk of extreme weather events like the wildfires of the western United States, such as this forest fire in the Boise National Forest, Idaho.

Climate change caused by the emission of greenhouse gases from human activities affects global temperature and precipitation . Records from the Intergovernmental Panel on Climate Change indicate that the global average temperature has increased by at least 0.4 degrees Celsius (0.72 degrees Fahrenheit) since the 1970s, and that by 2100, it could increase to around 4 degrees Celsius (7.2 degrees Fahrenheit) above preindustrial temperatures. While the global effects of climate change may seem too small to be noticed by people living around the world, we have already experienced the effects of climate change through severe weather events, including forest fires, hurricanes , droughts , heat waves, floods, and storms. Computer modelling of real data has shown that the frequency and intensity of these events are influenced by climate change. There is a distinction that needs to be made when it comes to the relationship between climate change and extreme environmental events: Climate change has not been proven to directly cause individual extreme environmental events, but it has been shown to make these events more destructive, and likely happen more frequently,than they normally would be. This drastic change is due to the increase in greenhouse gas emissions—primarily through the burning of fossil fuels for transportation, heat, and electricity—in the past 150 years. Greenhouse gases, such as carbon dioxide, methane, and nitrous oxide, trap heat within Earth’s atmosphere, making the planet warmer. A warmer atmosphere affects the water cycle because warmer air can hold more water vapor . In fact, the air’s capacity to hold water vapor increases by 7 percent with an increase in temperature of 1 degree Celsius (1.8 degrees Fahrenheit). This, along with warmer ocean temperatures, leads to heavier precipitation. Heavy precipitation can cause problems like flooding and landslides —where large amounts of soil or rock slide down a slope. An increase in intense precipitation comes with an increase in intense dry periods as well. Essentially, climate change causes wet places to become wetter and dry places to become drier by altering large-scale atmospheric circulation patterns. Warmer temperatures on land lead to reduced snowpack , earlier snowmelt , and evaporation of water from freshwater bodies. Extreme heat can lead to more frequent, severe, and prolonged heat waves and droughts and can make forest fires worse. On top of that, wildfires are harder to put out when air temperature is high and soil moisture is low. The number of heat waves, heavy rain events, and major hurricanes has increased in the United States. Hurricane Katrina of 2005 and Hurricane Sandy of 2012 are two of the most costly hurricanes in the history of the United States. The number of hurricanes that have occurred over recent years has not been linked to climate change, but their intensity has. The wind speed of tropical storms is increased by warmer sea-surface temperatures; by the end of the century, scientists predict maximum wind speed will increase by 2–11 percent. Coastal cities that are vulnerable to hurricanes will also be impacted by the sea level rise of around 0.3–1.2 meters (0.98–3.94 feet) in the next century, which will worsen coastal storms and flooding. Without preparing for climate change–induced environmental hazards , an increasing number of people worldwide will lose their homes and be forced into poverty. An average of around 22.5 million people have been displaced per year by climate or weather-related events since 2008. One way to prepare for extreme environmental events is by using current and past data and records to create computer models that show the frequency and intensity of these events. These models can also be used to predict when and where future events will occur and how destructive they will be. With this information, we can prepare for extreme weather events by warning people living in high-risk areas and sending disaster relief . The impact of climate change can also be observed in models by simulating the effects of different concentrations of greenhouse gases on variables, such as wind, rainfall, temperature, and air pressure. Past models used to prove that there is a relationship between climate change and extreme environmental events were not always reliable. This was due to a lack of data as well as flaws in climate models at the time. However, climate models have become more reliable, and a new field of science has developed to determine how climate change directly impacts extreme weather events: extreme event attribution. Since 2004, scientists have published more than 170 studies on the role of human-induced climate change on 190 extreme weather events. Research has found that climate change has increased the risk of wildfires in the western United States, extreme rainfall in China, and drought in South Africa. Continuous research and improvement in the field of extreme event attribution may help us figure out more precisely how climate change impacts extreme weather events–and how we might change this course.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

What Is Climate Change?

Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun’s activity or large volcanic eruptions. But since the 1800s, human activities have been the main driver of climate change , primarily due to the burning of fossil fuels like coal, oil and gas.

Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun’s heat and raising temperatures.

The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from using gasoline for driving a car or coal for heating a building, for example. Clearing land and cutting down forests can also release carbon dioxide. Agriculture, oil and gas operations are major sources of methane emissions. Energy, industry, transport, buildings, agriculture and land use are among the main sectors  causing greenhouse gases.

Illustration reads: $90 Trillion for infrastructure by 2030

Humans are responsible for global warming

Climate scientists have showed that humans are responsible for virtually all global heating over the last 200 years. Human activities like the ones mentioned above are causing greenhouse gases that are warming the world faster than at any time in at least the last two thousand years.

The average temperature of the Earth’s surface is now about 1.2°C warmer than it was in the late 1800s (before the industrial revolution) and warmer than at any time in the last 100,000 years. The last decade (2011-2020) was the warmest on record , and each of the last four decades has been warmer than any previous decade since 1850.

Many people think climate change mainly means warmer temperatures. But temperature rise is only the beginning of the story. Because the Earth is a system, where everything is connected, changes in one area can influence changes in all others.

The consequences of climate change now include, among others, intense droughts, water scarcity, severe fires, rising sea levels, flooding, melting polar ice, catastrophic storms and declining biodiversity.

The Earth is asking for help.

People are experiencing climate change in diverse ways

Climate change can affect our health , ability to grow food, housing, safety and work. Some of us are already more vulnerable to climate impacts, such as people living in small island nations and other developing countries. Conditions like sea-level rise and saltwater intrusion have advanced to the point where whole communities have had to relocate, and protracted droughts are putting people at risk of famine. In the future, the number of people displaced by weather-related events is expected to rise.

Every increase in global warming matters

In a series of UN reports , thousands of scientists and government reviewers agreed that limiting global temperature rise to no more than 1.5°C would help us avoid the worst climate impacts and maintain a livable climate. Yet policies currently in place point to a 3°C temperature rise by the end of the century.

The emissions that cause climate change come from every part of the world and affect everyone, but some countries produce much more than others .The seven biggest emitters alone (China, the United States of America, India, the European Union, Indonesia, the Russian Federation, and Brazil) accounted for about half of all global greenhouse gas emissions in 2020.

Everyone must take climate action, but people and countries creating more of the problem have a greater responsibility to act first.

Photocomposition: an image of the world globe looking worried to a thermometer with raising temperatures

We face a huge challenge but already know many solutions

Many climate change solutions can deliver economic benefits while improving our lives and protecting the environment. We also have global frameworks and agreements to guide progress, such as the Sustainable Development Goals , the UN Framework Convention on Climate Change and the Paris Agreement . Three broad categories of action are: cutting emissions, adapting to climate impacts and financing required adjustments.

Switching energy systems from fossil fuels to renewables like solar or wind will reduce the emissions driving climate change. But we have to act now. While a growing number of countries is committing to net zero emissions by 2050, emissions must be cut in half by 2030 to keep warming below 1.5°C. Achieving this means huge declines in the use of coal, oil and gas: over two-thirds of today’s proven reserves of fossil fuels need to be kept in the ground by 2050 in order to prevent catastrophic levels of climate change.

Growing coalition

Adapting to climate consequences protects people, homes, businesses, livelihoods, infrastructure and natural ecosystems. It covers current impacts and those likely in the future. Adaptation will be required everywhere, but must be prioritized now for the most vulnerable people with the fewest resources to cope with climate hazards. The rate of return can be high. Early warning systems for disasters, for instance, save lives and property, and can deliver benefits up to 10 times the initial cost.

We can pay the bill now, or pay dearly in the future

Climate action requires significant financial investments by governments and businesses. But climate inaction is vastly more expensive. One critical step is for industrialized countries to fulfil their commitment to provide $100 billion a year to developing countries so they can adapt and move towards greener economies.

Climate finance

To get familiar with some of the more technical terms used in connection with climate change, consult the Climate Dictionary .

Learn more about…

photocomposition: two hands, each one holding a megaphone

The facts on climate and energy

Climate change is a hot topic – with myths and falsehoods circulating widely. Find some essential facts here .

The science

The science

See the latest climate reports from the United Nations as well as climate action facts .

Photocomposition: an image showing causes and effects of climate change - a smokestack and a storm

Causes and Effects

Fossil fuels are by far the largest contributor to the greenhouse gas emissions that cause climate change, which poses many risks to all forms of life on Earth. Learn more .

The science

From the Secretary-General

Read the UN Chief’s latest statements on climate action.

Net zero

What is net zero? Why is it important? Our  net-zero page  explains why we need steep emissions cuts now and what efforts are underway.

Sustainable Development Goals

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

Finance

How will the world foot the bill? We explain the issues and the value of financing climate action.

Adaptation

What is climate adaptation? Why is it so important for every country? Find out how we can protect lives and livelihoods as the climate changes.

A butterfly on the tip of a branch

Climate Issues

Learn more about how climate change impacts are felt across different sectors and ecosystems.

A butterfly on the tip of a branch

Why women are key to climate action

Women and girls are on the frontlines of the climate crisis and uniquely situated to drive action. Find out why it’s time to invest in women.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

Consequences of climate change

Climate change affects all regions around the world. Polar ice shields are melting and the sea is rising. In some regions, extreme weather events and rainfall are becoming more common while others are experiencing more extreme heat waves and droughts. We need climate action now, or these impacts will only intensify.

Climate change is a very serious threat, and its consequences impact many different aspects of our lives. Below, you can find a list of climate change’s main consequences. Click on the + signs for more information.

Natural consequences

consequences_natural

What are the consequences of climate change for the natural world?

High temperatures

The climate crisis has increased the average global temperature and is leading to more frequent high-temperature extremes, such as heatwaves. Higher temperatures can cause increased mortality, reduced productivity and damage to infrastructure. The most vulnerable members of the population, such as the elderly and infants, will be most severely affected.

Higher temperatures are also expected to cause a shift in the geographical distribution of climate zones. These changes are altering the distribution and abundance of many plant and animal species, which are already under pressure from habitat loss and pollution.

Temperature rises are also likely to influence phenology – the behaviour and lifecycles of animal and plant species. This could in turn lead to increased numbers of pests and invasive species, and a higher incidence of certain human diseases.

Meanwhile, the yields and viability of agriculture and livestock, or the capacity of ecosystems to provide important services and goods (such as the supply of clean water or cool and clean air) could be diminished.

Higher temperatures increase the evaporation of water, which – together with the lack of precipitation – increases the risks of severe droughts.

Low-temperature extremes (cold spells, frosty days) could become less frequent in Europe. However, global warming affects the predictability of events and therefore our capacity to respond effectively.

Drought and wildfires

Due to the changing climate, many European regions are already facing more frequent, severe, and longer lasting droughts. A drought is an unusual and temporary deficit in water availability caused by the combination of lack of precipitation and more evaporation (due to high temperatures). It differs from water scarcity, which is the structural year-round lack of fresh water resulting from the over-consumption of water..

Droughts often have knock-on effects, for example on transport infrastructure, agriculture, forestry, water and biodiversity. They reduce water levels in rivers and ground water, stunt tree and crop growth, increase pest attacks and fuel wildfires.

In Europe, most of the roughly EUR 9 billion annual losses caused by drought affect agriculture, the energy sector and the public water supply. Extreme droughts are becoming more common in Europe, and the damage they cause is also growing.

With a global average temperature increase of 3°C, it is projected that droughts would happen twice as often and absolute annual losses from droughts in Europe would increase to EUR 40 billion per year, with the most severe impacts in the Mediterranean and Atlantic regions . More frequent and severe droughts will increase the length and severity of the wildfire season, particularly in the Mediterranean region. Climate change is also expanding the area at risk from wildfires. Regions that are not currently prone to fires could become risk areas.

Availability of fresh water

As the climate heats up, rainfall patterns change, evaporation increases, glaciers melt and sea levels rise. All these factors affect the availability of fresh water.

More frequent and severe droughts and rising water temperatures are expected to cause a decrease in water quality. Such conditions encourage the growth of toxic algae and bacteria, which will worsen the problem of water scarcity that has been largely caused by human activity.

The increase of cloudburst events (sudden extreme rainfall) is also likely to influence the quality and quantity of fresh water available, as storm water can cause uncleaned sewage to enter surface water.

Europe’s rivers generally originate in mountainous areas, and 40% of Europe’s fresh water comes from the Alps. However, changes in snow and glacier dynamics, and patterns of rainfall may lead to temporary water shortages across Europe. Changes to river flows due to drought may also affect inland shipping and the production of hydroelectric power.

Climate change is expected to lead an increase of precipitation in many areas. Increased rainfall over extended periods will mainly lead to fluvial (river) flooding, while short, intense cloudbursts can cause pluvial floods, where extreme rainfall causes flooding without any body of water overflowing.

River flooding is a common natural disaster in Europe, which has, along with storms, resulted in fatalities, affected millions of people and incurred massive economic losses in the last three decades. Climate change is likely to increase the frequency of flooding across Europe in the coming years.

Heavy rainstorms are projected to become more common and more intense due to higher temperatures, with flash floods expected to become more frequent across Europe.

In some regions, certain risks such as early spring floods could decrease in the short term with less winter snowfall, but the increased risk of flash flooding in mountain areas overloading the river system may offset those effects in the medium term.

Sea-level rise and coastal areas

The sea level rose over the course of the 20th century, and the tendency has accelerated in recent decades.

The rise is mostly due to thermal expansion of the oceans because of warming. But melting ice from glaciers and the Antarctic ice sheet is also contributing. It is predicted that Europe will experience an average 60 to 80 cm sea-level rise by the end of the century, mainly depending on the rate at which the Antarctic ice sheet melts.

Around a third of the EU’s population lives within 50 km of the coast and these areas generate over 30% of the Union’s total GDP. The economic value of assets within 500 m of Europe’s seas totals between EUR 500 billion to 1,000 billion.

Alongside other climate change impacts, sea-level rise will increase the risk of flooding and erosion around the coasts, with significant consequences for the people, infrastructure, businesses and nature in these areas.

Moreover, sea level rise is projected to reduce the amount of available fresh water, as seawater pushes further into underground water tables. This is also likely to lead to much more saltwater intrusion into bodies of fresh water, affecting agriculture and the supply of drinking water.

It will also affect biodiversity in coastal habitats, and the natural services and goods they provide. Many wetlands will be lost, threatening unique bird and plant species, and removing the natural protection these areas provide against storm surges.

Biodiversity

122574729.jpg

Climate change is happening so fast that many plants and animal species are struggling to cope. There is clear evidence to show that biodiversity is already responding to climate change and will continue to do so. Direct impacts include changes in phenology (the behaviour and lifecycles of animal and plant species), species abundance and distribution, community composition, habitat structure and ecosystem processes.

Climate change is also leading to indirect impacts on biodiversity through changes in the use of land and other resources. These may be more damaging than the direct impacts due to their scale, scope and speed. The indirect impacts include: habitat fragmentation and loss; over-exploitation; pollution of air, water and soil; and the spread of invasive species. They will further reduce the resilience of ecosystems to climate change and their capacity to deliver essential services; such as climate regulation, food, clean air and water, and the control of floods or erosion.

Climate change may aggravate erosion, decline in organic matter, salinisation, soil biodiversity loss, landslides, desertification and flooding. The effect of climate change on soil carbon storage can be related to changing atmospheric CO2 concentrations, increased temperatures and changing precipitation patterns. Extreme precipitation events, fast melting of snow or ice, high river discharges and increased droughts are all climate-related events which influence soil degradation. Deforestation and other human activities (agriculture, skiing) also play a role. Saline soils are expected to increase in coastal areas as a result of saltwater intrusion from the seaside because of rising sea levels and (periodically) low river discharges.

Inland water

125917620.jpg

Climate change is predicted to lead to major changes in water availability across Europe, due to less predictable rainfall patterns and more intense storms. This will result in increased water scarcity, especially in southern and south-eastern Europe, and an increased risk of flooding throughout much of the continent. The resulting changes will affect many land and marine regions, and many different natural environments and species.

Water temperature is one of the central parameters that determine the overall health of aquatic ecosystems because aquatic organisms have a specific range of temperatures they can tolerate. The changes in climate have increased water temperatures of rivers and lakes, decreased ice cover, thereby affecting water quality and freshwater ecosystems.

Marine environment

The impacts of climate change, such as increasing sea surface temperatures, ocean acidification and shifts in currents and wind patterns will significantly alter the physical and biological make-up of the oceans. Changes in temperatures and ocean circulation have the potential to change geographical fish distribution. An increasing sea temperature might also enable alien species to expand into regions where they previously could not survive. Ocean acidification for example will have an impact on various calcium carbonate-secreting organisms. These changes will have unavoidable impacts on coastal and marine ecosystems, resulting in major socio-economic consequences for many regions.

Social threats

consequences_social_threats

What social threats does climate change bring upon us?

131581367.jpg

Climate change is a significant threat not only to human health but also to animal and plant health. While a changing climate might not create many new or unknown health threats, existing effects will be exacerbated and more pronounced than currently seen.

The most important health effects from future climate change are projected to include:

  • Increases in summer heat-related mortality (deaths) and morbidity (illness);
  • Decreases in winter cold-related mortality (deaths) and morbidity (illness);
  • Increases in the risk of accidents and impacts on wider well-being from extreme weather events (floods, fires and storms);
  • Changes in the impact of diseases e.g. from vector-, rodent-, water- or food-borne disease;
  • Changes in the seasonal distribution of some allergenic pollen species, range of virus, pest and disease distribution;
  • Emerging and re-emerging animal diseases increasing challenges to European animal and human health by viral zoonotic diseases and vector-borne diseases;
  • Emerging and re-emerging plant pests (insect, pathogens and other pests) and diseases affecting forest and crop systems;
  • Risks in relation to change in air quality and ozone.

Vulnerable population

People living in low-income urban areas with poor infrastructure, and, generally speaking, population groups with lower incomes and assets, are more exposed to climate impacts but have less capacity to face them.

Women may be disproportionately impacted by climate change and are at a disadvantage when expensive adaptation measures are required. At the same time, women are key actors in adaptation and more generally sustainable practices.

 Unemployed and socially marginalised people are among the most vulnerable to climate risks.

Europe's ageing population, disproportionately affected by reduced mobility or health impediments, will result in a higher share of the population being vulnerable to climate change impacts.

Climate change has also already started to have an impact on displacement and migration. Although climate is only of several drivers of displacement and migration, many partner countries on their path towards sustainable development are among the most affected. People living there often depend heavily on their natural environment, and they have the least resources to cope with the changing climate

The impact of temperature increases, changes in precipitation regimes or sea-level rise will affect – directly or indirectly – the productivity and viability of all economic sectors in all EU Member States, with labour market implications.

Climate change may affect workforce availability due to a decrease in the health conditions of the population and additional occupational health constraints (higher temperature at work, more frequent and intense natural hazards keeping people from reaching their workplace).

Moreover, several economic sectors are highly vulnerable because of their dependence on regular climate conditions. Sectoral production shifts – in agriculture and tourism for instance – are expected as a consequence of climate change.

Major investments in adaptation could offer employment and income opportunities in activities such as reinforcing coastal defences, buildings and (green) infrastructure, water management and relocation of exposed settlements. Yet, uncertainty remains regarding the possible net job creation effects of such investments. Labour skills upgrading will be necessary to grasp these opportunities.

Reducing vulnerability and implementing adaptation measures is not only the task and responsibility of governments. The severity of climate change requires public and private actors to work together in reducing vulnerability and adapting to the impacts. However, not all stakeholders are aware and informed about their vulnerability and the measures they can take to pro-actively adapt to climate change. Education and awareness-raising is therefore an important component of the adaptation process to manage the impacts of climate change, enhance adaptive capacity, and reduce overall vulnerability.

Threats to business

consequences_threats_to_business

How does climate change represent a threat to business?

Infrastructure and buildings

The impacts of climate change are particularly pertinent to infrastructure and buildings given their long lifespan and their high initial cost, as well as their essential role in the functioning of our societies and economies.

Buildings and infrastructure can be vulnerable to climate change because of their design (low resistance to storms) or location (e.g. in flood-prone areas, landslides, avalanches). Indeed they can be damaged or rendered unfit for use by any changing climatic condition or extreme weather event: rising sea level, extreme precipitation and floods, occurrences of extreme low or high temperatures , heavy snowfalls, strong winds…

Consequences of climate change for buildings and infrastructure will differ from region to region.

152961673.jpg

Climate threats for the European energy system already exist and are projected to increase. Climate change is expected to reduce demand for heating in northern and north-western Europe and to strongly increase energy demand for cooling in southern Europe, which may further exacerbate peaks in electricity demand in the summer.

More intense and frequent heatwaves will shift energy supply and demand patterns, often in opposite directions. Further increases in temperature and droughts may limit the availability of cooling water for thermal power generation in summer (lowering energy supply), whereas demand for air conditioning will increase.

Moreover, greater magnitude and frequency of extreme weather events will cause threats for physical energy infrastructure: overhead transmission and distribution, but also substations or transformers.

Climate change also brings increased uncertainty in weather patterns across Europe. This has a direct negative impact in the long term on the production of renewable energy. Some immediate examples would be less sun or wind in areas where there is usually more or heat and droughts affecting the crops intended for the production of energy from biomass.

Agriculture

Climate change already has and will continue to have a significant negative impact on European agriculture throughout the 21 st century due to increased heat, drought, floods, pests, diseases and the decreasing health of soils:

  • Substantial losses in agricultural production (lower crop yields)  
  • Reduction in suitable areas for crop cultivation

Southern regions of Europe will be hit the hardest due to heat and water shortage. While in the North of Europe higher temperatures may open up new areas for warm-season crops, these gains won’t offset the losses in other regions.

106559499.jpg

Forests are also affected by climate change, with increased risks of droughts, storms, fires, pests, and diseases disturbing forest health.

The biodiversity of European forests is expected to change, because climate change poses a particular threat to species that are highly adapted to specific climatic and environmental conditions. For example, the limited diversity of tree species in boreal forests makes them less resilient to natural disturbances and therefore more vulnerable to climate change.

Southern Europe is likely to see a general decrease in forest growth due to decreasing precipitation. Furthermore, the impact of wildfires is particularly strong on already degraded ecosystems in the South, and it's expected to get worse with longer and more severe fire seasons.

The frequency and intensity of most types of extreme events is expected to change significantly as a result of climate change. In the short term, as long as due allowance is made for the underlying trend, premiums would rise gradually and the insurance market would absorb such changes without disruption. However, risk knowledge often advances in ‘steps’, which can lead to jumps in the price over a short period. In the longer term, particularly in most vulnerable sectors or areas, climate change could indirectly increase social disparities as insurance premiums become unaffordable for a fringe of the population.

157700600.jpg

The economic consequences of climate change for regions where tourism is important can be substantial. The suitability of southern Europe for tourism is projected to decline markedly during the key summer months but improve in other seasons. Central Europe is projected to increase its tourism appeal throughout the year. Projected reductions in snow cover will negatively affect the winter sports industry in many regions.

Cross-cutting issues for businesses

Climate change threatens all businesses, as all exist on Earth. However, some are more vulnerable than others. Impacts are expected to fall disproportionately on SMEs including disrupting business operations, property damage, disruption to supply chains and infrastructure, leading to increased costs of maintenance and materials, and higher prices. However, climate action offers a wide range of new opportunities for businesses to develop products and services that would help both reduce emissions and adapt to a warming world.

Territorial threats

consequences_territorial_threats

How are different areas affected by climate change?

The Arctic faces major changes including a higher-than-average temperature increase, a decrease in summer sea ice cover and thawing of permafrost. The reduction of ice cover is accelerating and projected to continue to impact local natural and human systems. It also opens up potential additional burdens on the environment, such as extensive oil and gas exploration and the opening of new shipping routes. Thawing of permafrost has the potential to seriously affect human systems, for example by creating infrastructure problems. The fragile Arctic ecosystems have suffered significantly from above-average temperature increases and these impacts are expected to continue.

Northern Europe

Projections suggest less snow and lake and river ice cover, increased winter and spring river flows in some parts and decreases in other parts (e.g. Finland), and greater damage by winter storms. More frequent and intense extreme weather events in the medium to long term might adversely impact the region, for example by making crop yields more variable.

North-western Europe

Coastal flooding has impacted low-lying coastal areas in north-western Europe in the past and the risks are expected to increase due to sea level rise and an increased risk of storm surges. North Sea countries are particularly vulnerable. Higher winter precipitation is projected to increase the intensity and frequency of winter and spring river flooding, although to date no increased trends in flooding have been observed.

Central and eastern Europe

Temperature extremes are projected to be a key impact in central and eastern Europe. Together with reduced summer precipitation this can increase the risk of droughts, and is projected to increase energy demand in summer. The intensity and frequency of river floods in winter and spring (in various regions) is projected to increase due to greater winter precipitation. Climate change is also projected to lead to higher crop-yield variability and more frequent forest fires.

Mediterranean region

The Mediterranean region has been subject to major impacts over recent decades as a result of decreased precipitation and increased temperature, and these are expected to worsen as the climate continues to change. The main impacts are decreases in water availability and crop yields, increasing risks of droughts and biodiversity loss, forest fires, and heat waves. Increasing irrigation efficiency in agriculture can reduce water withdrawals to some degree, but will not be sufficient to compensate for climate-induced increases in water stress. In addition, the hydropower sector will be increasingly affected by lower water availability and increasing energy demand, while the tourism industry will face less favourable conditions in summer. Environmental flows, which are important for the healthy maintenance of aquatic ecosystems, are threatened by climate change impacts and socio-economic developments.

Cities and urban areas

In previous years, increasing urban land take and urban population growth have in many places increased the exposure of European cities to different climate impacts such as heatwaves, flooding, and droughts. The impacts of extreme events such as the flooding of the river Elbe in 2002 or the urban drainage flood in Copenhagen in 2011 demonstrate the high vulnerability of cities to extreme weather events. In the future, ongoing urban land take, growth and concentration of population in cities, as well as an aging population, will contribute to further increase  the vulnerability of cities to climate change. Urban design, urban management and enhancing green infrastructure may partly address these effects.

Mountain areas

The increase in temperature is particularly significant in many mountain regions, where loss of glacier mass, reduced snow cover, thawing of permafrost and changing precipitation patterns, including less precipitation falling as snow, have been observed and are expected to increase further. This could lead to an increase in the frequency and intensity of floods in some mountain areas (e.g. in parts of Scandinavia) that can impact people and the built environment. Additional projected impacts include reduced winter tourism, lower energy potential from hydropower in southern Europe, a shift in vegetation zones and extensive biodiversity loss. Plant and animal species living close to mountain tops face the risk of becoming extinct due to the inability to migrate to higher regions.

The retreat of the vast majority of glaciers also affects water availability in downstream areas.

As you can see, climate change is a serious matter and it affects us all. This can be overwhelming, but there’s good news: solutions exist. Find out about what the EU is doing to fight the climate crisis and how you can play your part too.

Share this page

  • International edition
  • Australia edition
  • Europe edition

Image of a wildfire with a temperature gauge graphic superimposed on it

World’s top climate scientists expect global heating to blast past 1.5C target

Exclusive: Planet is headed for at least 2.5C of heating with disastrous results for humanity, poll of hundreds of scientists finds

  • ‘Hopeless and broken’: why the world’s top climate scientists are in despair

Hundreds of the world’s leading climate scientists expect global temperatures to rise to at least 2.5C (4.5F) above preindustrial levels this century, blasting past internationally agreed targets and causing catastrophic consequences for humanity and the planet, an exclusive Guardian survey has revealed.

Almost 80% of the respondents, all from the authoritative Intergovernmental Panel on Climate Change (IPCC), foresee at least 2.5C of global heating, while almost half anticipate at least 3C (5.4F). Only 6% thought the internationally agreed 1.5C (2.7F) limit would be met.

Many of the scientists envisage a “semi-dystopian” future, with famines, conflicts and mass migration, driven by heatwaves, wildfires, floods and storms of an intensity and frequency far beyond those that have already struck.

Numerous experts said they had been left feeling hopeless, infuriated and scared by the failure of governments to act despite the clear scientific evidence provided.

“I think we are headed for major societal disruption within the next five years,” said Gretta Pecl, at the University of Tasmania. “[Authorities] will be overwhelmed by extreme event after extreme event, food production will be disrupted. I could not feel greater despair over the future.”

But many said the climate fight must continue, however high global temperature rose, because every fraction of a degree avoided would reduce human suffering.

Peter Cox, at the University of Exeter, UK, said: “Climate change will not suddenly become dangerous at 1.5C – it already is. And it will not be ‘game over’ if we pass 2C, which we might well do.”

The Guardian approached every contactable lead author or review editor of IPCC reports since 2018. Almost half replied, 380 of 843. The IPCC’s reports are the gold standard assessments of climate change, approved by all governments and produced by experts in physical and social sciences. The results show that many of the most knowledgeable people on the planet expect climate havoc to unfold in the coming decades.

The climate crisis is already causing profound damage to lives and livelihoods across the world, with only 1.2C (2.16F) of global heating on average over the past four years. Jesse Keenan, at Tulane University in the US, said: “This is just the beginning: buckle up.”

Nathalie Hilmi, at the Monaco Scientific Centre, who expects a rise of 3C, agreed: “We cannot stay below 1.5C.”

The experts said massive preparations to protect people from the worst of the coming climate disasters were now critical. Leticia Cotrim da Cunha, at the State University of Rio de Janeiro, said: “I am extremely worried about the costs in human lives.”

The 1.5C target was chosen to prevent the worst of the climate crisis and has been seen as an important guiding star for international negotiations. Current climate policies mean the world is on track for about 2.7C , and the Guardian survey shows few IPCC experts expect the world to deliver the huge action required to reduce that.

after newsletter promotion

Younger scientists were more pessimistic, with 52% of respondents under 50 expecting a rise of at least 3C, compared with 38% of those over 50. Female scientists were also more downbeat than male scientists, with 49% thinking global temperature would rise at least 3C, compared with 38%. There was little difference between scientists from different continents.

Dipak Dasgupta, at the Energy and Resources Institute in New Delhi, said: “If the world, unbelievably wealthy as it is, stands by and does little to address the plight of the poor, we will all lose eventually.”

The experts were clear on why the world is failing to tackle the climate crisis. A lack of political will was cited by almost three-quarters of the respondents, while 60% also blamed vested corporate interests, such as the fossil fuel industry.

Many also mentioned inequality and a failure of the rich world to help the poor, who suffer most from climate impacts. “I expect a semi-dystopian future with substantial pain and suffering for the people of the global south,” said a South African scientist, who chose not to be named. “The world’s response to date is reprehensible – we live in an age of fools.”

About a quarter of the IPCC experts who responded thought global temperature rise would be kept to 2C or below but even they tempered their hopes.

“I am convinced that we have all the solutions needed for a 1.5C path and that we will implement them in the coming 20 years,” said Henry Neufeldt, at the UN’s Copenhagen Climate Centre. “But I fear that our actions might come too late and we cross one or several tipping points .”

Lisa Schipper, at University of Bonn in Germany, said: “My only source of hope is the fact that, as an educator, I can see the next generation being so smart and understanding the politics.”

  • Climate crisis
  • Climate science
  • Intergovernmental Panel on Climate Change (IPCC)
  • Greenhouse gas emissions
  • Extreme heat
  • Extreme weather

Most viewed

  • Share full article

Advertisement

Supported by

Biden Administration Moves to Speed Up Permits for Clean Energy

The White House wants federal agencies to keep climate change in mind as they decide whether to approve major projects.

Transmission lines with a sky at dusk in the background.

By Coral Davenport

The Biden administration on Tuesday released rules designed to speed up permits for clean energy while requiring federal agencies to more heavily weigh damaging effects on the climate and on low-income communities before approving projects like highways and oil wells.

As part of a deal to raise the country’s debt limit last year, Congress required changes to the National Environmental Policy Act, a 54-year-old bedrock law that requires the government to consider environmental effects and to seek public input before approving any project that necessitates federal permits.

That bipartisan debt ceiling legislation included reforms to the environmental law designed to streamline the approval process for major construction projects, such as oil pipelines, highways and power lines for wind- and solar-generated electricity. The rules released Tuesday, by the White House Council on Environmental Quality, are intended to guide federal agencies in putting the reforms in place.

But they also lay out additional requirements created to prioritize projects with strong environmental benefits, while adding layers of review for projects that could harm the climate or their surrounding communities.

“These reforms will deliver smarter decisions, quicker permitting, and projects that are built better and faster,” said Brenda Mallory, chair of the council. “As we accelerate our clean energy future, we are also protecting communities from pollution and environmental harms that can result from poor planning and decision making while making sure we build projects in the right places.”

The move comes as President Biden rushes to push through a slew of major environmental rules ahead of November’s presidential election, including policies to limit climate-warming pollution from cars , trucks , power plants and oil and gas wells ; to protect the habitats of the sage grouse and other endangered species ; to ban asbestos ; and to remove so-called forever chemicals from tap water .

The rules announced Tuesday could help to more quickly carry out Mr. Biden’s signature climate law, the 2022 Inflation Reduction Act , which includes at least $370 billion in tax incentives to expand renewable energy, such as wind and solar power, as well as electric vehicles. Analysts say it could be difficult to fully realize the benefits of the law if, say, the construction of transmission lines needed for renewable energy or electric vehicle charging stations is bogged down in the permitting process.

The National Environmental Policy Act, known as NEPA, was signed into law by President Richard M. Nixon in 1970, after several environmental disasters, including a crude oil spill off the coast of Santa Barbara, Calif., and fires on the heavily polluted Cuyahoga River in Ohio, that shocked the nation.

For decades, the oil and gas, construction and real estate industries complained that the permitting requirements hindered business. Communities affected by major projects and environmental groups have often been able to use NEPA to delay or prevent projects from moving forward.

During his term as president, Donald J. Trump, a real estate developer, stripped away some of the protections under the environmental law, only to have Mr. Biden restore them.

Last year, as Mr. Biden sought Republican support for legislation to lift the federal debt ceiling, he agreed to speed up federal approvals for all kinds of projects, polluting or not. The new provisions include a requirement that the analyses of a project’s environmental impact be completed within two years. One recent government study found these analyses took an average of 4.5 years .

At the same time, the new rules released by the White House Council for Environmental Quality would allow projects that have a demonstrated long-term environmental benefit to receive expedited environmental reviews or bypass them altogether. Federal agencies would also be required to identify environmentally preferable alternatives to proposed projects early in the permit review process.

They also direct federal agencies to consider whether a proposed project would avoid or reduce the pollution that disproportionately affects low-income and minority communities.

“This is a big deal because for the first time it prioritizes projects that have climate change and or environmental justice benefits, such as transmission lines that bring renewable energy to market,” said Ted Boling, an environmental lawyer who worked in the environmental quality council from the Clinton to the Trump administrations.

“When it’s time to permit a highway, agencies will be required to address the environmental justice effects of siting highways that split neighborhoods,” Mr. Boling said.

Environmentalists roundly praised the rules.

“We are thrilled to see NEPA strengthened and restored,” said Sam Wojcicki, senior director of climate policy at the National Audubon Society. “The new climate and environmental justice provisions will result in more robust, more resilient projects, while ensuring that the voices of impacted communities are heard. Meaningful community engagement is critical for an equitable, sustainable, and lasting clean energy transition.”

The construction industry criticized the changes.

Ben Brubeck, a vice president of the Associated Builders and Contractors, an industry group, said in a statement, “These unnecessarily onerous new NEPA regulations will make it more difficult to build important projects and are a major step backward for critical infrastructure, the construction industry and America’s economic future. While both Republicans and Democrats have long agreed on the need for common-sense permitting reform, this final rule fails to meaningfully improve environmental protections and actually expands and lengthens environmental reviews that already take years.”

Senator Joe Manchin III, the West Virginia Democrat who has opposed much of Mr. Biden’s climate agenda, said he would try to block the rule.

Mr. Manchin, a champion of coal and gas, worked to include environmental permitting reforms in the debt ceiling legislation. He criticized the White House’s move to add climate-focused requirements.

“At a time when everyone agrees that it takes too long to build infrastructure in this country, the administration’s new NEPA regulations will take us backward,” Mr. Manchin said in a statement. “All the White House had to do was implement the common-sense, bipartisan permitting reforms in the Fiscal Responsibility Act, that all sides agreed upon, but once again they’ve disregarded the deal that was made, the intent of the law that was signed, and are instead corrupting it with their own radical agenda. This will only lead to more costly delays and litigation.”

Mr. Manchin threatened to lead a vote to undo the rule. Under the Congressional Review Act of 1996, a new regulation can be undone by a simple majority vote in Congress within 60 legislative days of its publication in the Federal Register. Given Democrats’ razor-thin majority in the Senate, it is possible that Mr. Manchin’s effort to roll back the rule could be successful if he were joined by Republicans and just a few members of his own party. However, even if lawmakers succeed in rolling back the rule, the effort is unlikely to sustain an all-but-certain veto from Mr. Biden.

The rule could be vulnerable to further attack if Mr. Trump, the presumptive Republican nominee, is re-elected to the White House, where he has promised to decimate much of Mr. Biden’s environmental legacy.

An earlier version of this article misspelled the surname of an environmental lawyer who worked in the environmental quality council from the Clinton administration through the Trump administration. He is Ted Boling, not Bolling.

How we handle corrections

Coral Davenport covers energy and environment policy, with a focus on climate change, for The Times. More about Coral Davenport

COMMENTS

  1. Effects of Climate Change

    For example, Pittock noted that climate change has been a major cause of water shortages in most parts of the world (Pittock 2009, p. 108). He however attributed this to a number of factors, including precipitation decrease in some regions, high rates of evaporation in the world and general loss of glaciers.

  2. Effects of Climate Change

    The effects of climate change are most apparent in the world's coldest regions—the poles. The Arctic is heating up twice as fast as anywhere else on earth, leading to the rapid melting of ...

  3. Climate Change Essay for Students and Children

    Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ...

  4. The Effects of Climate Change

    Global climate change is not a future problem. Changes to Earth's climate driven by increased human emissions of heat-trapping greenhouse gases are already having widespread effects on the environment: glaciers and ice sheets are shrinking, river and lake ice is breaking up earlier, plant and animal geographic ranges are shifting, and plants and trees are blooming sooner.

  5. Climate Change

    Climate change is a long-term shift in global or regional climate patterns that affects the lives of humans, animals and plants. Learn more about the causes, consequences and solutions of this global challenge from National Geographic Society, a trusted source of scientific and educational information.

  6. Climate Change: Causes, Effects, and Solutions

    change happens widely because we are burning fossil fuels and that increases gases such as. CO2, methane, and some other gases in the atmosphere" (phone interview). According to the. Australian Greenhouse Office, the world depends on fossil fuels such as oil, coal, and natural. gas for 80% of its energy needs.

  7. Causes and Effects of Climate Change

    Causes and Effects of Climate Change. Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas ...

  8. Climate change and ecosystems: threats, opportunities and solutions

    The papers in this section advance our thinking about the effects of climate change on ecosystem properties (biological diversity, trophic webs or energy flux, nutrient cycling or material flux) in different ecological communities (terrestrial plants, invertebrates in marine sediments, terrestrial soil microbes). ...

  9. What are the effects of global warming?

    Climate change encompasses not only rising average temperatures but also natural disasters, shifting wildlife habitats, rising seas, and a range of other impacts.

  10. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  11. Climate change widespread, rapid, and intensifying

    For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

  12. The Science of Climate Change Explained: Facts, Evidence and Proof

    Climate denialists often point to these natural climate changes as a way to cast doubt on the idea that humans are causing climate to change today. However, that argument rests on a logical fallacy.

  13. Effects of climate change

    Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather.As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification.

  14. Climate change: a threat to human wellbeing and health of the planet

    Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ... For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of ...

  15. Global warming

    Global warming, the phenomenon of rising average air temperatures near Earth's surface over the past 100 to 200 years. Although Earth's climate has been evolving since the dawn of geologic time, human activities since the Industrial Revolution have a growing influence over the pace and extent of climate change.

  16. Climate Change Assay: A Spark Of Change

    A spark of change. "Most human beings have an almost infinite capacity for taking things for granted," says Aldous Huxley in one of his books. He perfectly summarises the biggest cause of the issues the world of today struggles with, the issues that are created by humans' tendency to ignore the consequences of their actions.

  17. Climate change and human behaviour

    Climate change is an immense challenge. Human behaviour is crucial in climate change mitigation, and in tackling the arising consequences. In this joint Focus issue between Nature Climate Change ...

  18. A review of the global climate change impacts, adaptation, and

    Abstract. Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide.

  19. Social and economic impacts of climate

    Much research aims to forecast impacts of future climate change, but we point out that society may also benefit from attending to ongoing impacts of climate in the present, because current climatic conditions impose economic and social burdens on populations today that rival in magnitude the projected end-of-century impacts of climate change.

  20. The Influence of Climate Change on Extreme Environmental Events

    The impact of climate change can also be observed in models by simulating the effects of different concentrations of greenhouse gases on variables, such as wind, rainfall, temperature, and air pressure. Past models used to prove that there is a relationship between climate change and extreme environmental events were not always reliable.

  21. What Is Climate Change?

    Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun's activity or large volcanic eruptions. But since the 1800s ...

  22. Consequences of climate change

    We need climate action now, or these impacts will only intensify. Climate change is a very serious threat, and its consequences impact many different aspects of our lives. Below, you can find a list of climate change's main consequences. Click on the + signs for more information.

  23. 10 ways you can help fight the climate crisis

    Here are 10 ways you can be part of the climate solution: 1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  24. Environmental Changes Are Fueling Human, Animal and Plant Diseases

    The researchers found that, across the board, four of the five trends they studied — biodiversity change, the introduction of new species, climate change and chemical pollution — tended to ...

  25. 'Hopeless and broken': why the world's top climate scientists are in

    "Scientists are human: we are also people living on this Earth, who are also experiencing the impacts of climate change, who also have children, and who also have worries about the future ...

  26. Impact of Climate Change on Global Agriculture ...

    This review paper comprehensively examines the multifaceted impacts of climate change on agriculture, highlighting challenges faced by vulnerable regions and crops. The adverse effects on crop ...

  27. Climate change ethics

    Climate change is a pressing issue that threatens the basic human rights of individuals and communities around the world. Climate change violates several human rights, including the right to life, health, food, water, and shelter. Climate change exacerbates existing inequalities and disproportionately affects vulnerable populations, such as low-income communities, indigenous peoples, and small ...

  28. World's top climate scientists expect global heating to blast past 1.5C

    The climate crisis is already causing profound damage to lives and livelihoods across the world, with only 1.2C (2.16F) of global heating on average over the past four years. Jesse Keenan, at ...

  29. Eco-pedagogy and eco-literacy through lived experiences

    Introduction. The youth in contemporary society face disparate consequences stemming from ecological challenges, such as climate change and biodiversity loss (see Díaz et al., Citation 2019; IPCC, Citation 2021).These impacts can be attributed to the escalating influence of consumer capitalism and associated destructive actions (Marques, Citation 2020).

  30. Biden Administration Moves to Speed Up Permits for Clean Energy

    The Biden administration on Tuesday released rules designed to speed up permits for clean energy while requiring federal agencies to more heavily weigh damaging effects on the climate and on low ...