• No category

Respiratory Case Study - Asthma Attack - Student handout

asthma attack case study exam 2

Related documents

LOS ANGELES COMMUNITY COLLEGE DISTRICT BOARD OF TRUSTEES STUDENT AFFAIRS COMMITTEE

Study collections

Add this document to collection(s).

You can add this document to your study collection(s)

Add this document to saved

You can add this document to your saved list

Suggest us how to improve StudyLib

(For complaints, use another form )

Input it if you want to receive answer

  • Open access
  • Published: 03 April 2020

Determinants of Acute Asthma Attack among adult asthmatic patients visiting hospitals of Tigray, Ethiopia, 2019: case control study

  • Melaku Negash 1 ,
  • Hagos Tsegabrhan 2 ,
  • Teklit Meles 3 ,
  • Degena Bahrey Tadesse 1 ,
  • Gebreamlak Gidey 4 ,
  • Yemane Berhane 5 ,
  • Kibrom Berhanu 6 &
  • Tsgalem Haylemaryam 7  

Asthma Research and Practice volume  6 , Article number:  1 ( 2020 ) Cite this article

4831 Accesses

3 Citations

3 Altmetric

Metrics details

Introduction

Acute asthma attack is one of the most common causes of visits to hospital emergency departments in all age groups of the population and accounts for the greater part of healthcare burden from the disease. Despite, Acute asthma attack is an important public health problem that affects not only the patients, but also to the family, health professionals, health care institutions and development of the nation, little is known about the risk factors of acute asthma attack.

Therefore, this study is aimed to investigate the determinants of acute asthma attack among.

The aim of this study was to assess the determinant factors of acute asthma attack among adult asthmatic patients visiting general hospitals of central zone, Tigray, Ethiopia, 2019.

Hospital based unmatched case control study design was conducted in general hospitals of central zone of Tigray, Ethiopia 2019. Data were collected using pretested interviewer administered questionnaire. A total of 289 study subjects (96 cases &193 controls) were selected by systematic random sampling. Data were entered to Epi data version 3.1 then exported to SPSS version 23 for analysis. Bivariate logistic regression was employed to examine the statistical association between dependent and independent variables. Variables with p value < 0.25 in binary logistic regression were entered to multivariable logistic regression model and variables with p value < 0.05 was taken as significant determinants of the outcome variable.

A total of 96 adult asthmatic patients who have acute asthma attack (cases) and 193 adult asthmatic patients without attack (controls)) with 100% response rate were participated in this study. Upper Respiratory tract Infection [AOR = 6.835,95% CI = 3.285,14.222], Season [AOR =2.204,95% CI = 1.011,4.805] kitchen smoke [AOR = 2.307,95%CI1.010,5.272]& sleep apnea [AOR = 9.254, 5%CI =3.563,25.460] were significantly associated with acute asthma exacerbation.

Asthma is a long-term inflammatory disease of the respiratory system which is characterized by wheezing, shortness of breath, chest tightness. Globally it affects approximately 300 million people and is estimated to rise to 400 million by 2025 globally [ 1 , 2 ]. And it is ranked 16th among the leading causes of disability and 28th among the leading causes of burden of disease, as measured by disability adjusted life years (DALYs) [ 3 ].

According to Croatian medical journal 2013, an estimate of asthma prevalence in Africa, was 49.7 million in the age of < 15 years (13.9%), < 45 years 102.9 million (13.8%), and in total population 119.3 million (12.8%) in 2010 [ 4 ].

Asthma exacerbation is defined as a worsening of shortness of breath, cough, wheezing, or chest tightness. If not treated immediately there will be increase in flow resistance causing increased work of breathing, gas exchange inefficiency, respiratory muscle tiredness and finally hypercapnic and hypoxemic respiratory failure [ 5 ]. This implies that acute asthma attack is a significant public health problem that affects patients with their parents or families and the community through labor and school loss, frequent emergency clinic visits, a poor quality of life hospitalizations and finally death [ 6 ]. According to Centers for Disease Control and prevention (CDC) report, More than 11 million people reported having an acute asthma attack [ 7 ].

Despite, in Ethiopia little is known about how risk factors are associated with exacerbation, according to asthma severity and the relative importance of the risk factors. This may be the reason for no policy and strategy to ascertain and acting out of effective intervention in order to reduce the burden of acute asthma attack [ 8 ]. Therefore, this study is aimed to full fill this gap.

Study setting and study design

Hospital based unmatched case control study was conducted in the selected general Hospitals of Central zone of Tigray from November 2018 to July 2019.

Study population and sample size determination

Source population.

All adult asthmatic patients visited to emergency unit who have acute asthma attack.

All adult patients diagnosed as asthma but without acute asthmatic attack who visited the OPD and the regular follow-up unit during the data collection period.

Study population

All selected adult asthmatic patients visited to emergency unit who have acute asthma attack during the data collection period.

All selected adult patients diagnosed as asthma but without acute asthmatic attack who visited the OPD and the regular follow-up unit during the data collection period.

Eligibility criteria

Inclusion criteria.

Adult asthmatic patients who have acute asthma attack during the data collection period.

Adult asthmatic patient without acute asthma attack during the data collection period.

Exclusion criteria

Patients with any history of pulmonary embolism, chronic obstructive pulmonary disease, active pulmonary TB, known congestive heart failure and known mechanical obstruction.

Sample size determination

Sample size was calculated from Previous study conducted in Uganda [ 9 ],using Epi info version 7. sample size was determined based on the assumption of confidence level = 95%; Power = 80%; Odds ratio = 2.132 with case to control ratio = 1:2, proportion of among controls 37.2%, proportion of among cases = 55.8%.

Therefore, the required sample size for cases was =92 where as for the controls =183 and the overall sample size was = 275 then after adding 5% non-response rate, the total sample size was 289. Finally, a sample size for cases was 96 and for controls 193.

Sampling technique and procedure

The total sample size was allocated to each hospital proportionally based on the number of patients who attend in the selected hospitals. A total number of 585(case 165, control.420) patients attended at the selected Hospitals with in 2 months of the previous year (April 1 to May 30–2018). Systematic random sampling method was applied in each hospital to select 289 participants.

Study Variables

Dependent variable.

Acute asthma attack.

Independent variables

Socio-demographic variables.

Age, Gender, Marital status, Residence, Educational level, Employment status and Occupational status.

Behavioral factors

Exercise, vigorous activity Smoking cigarette.

Environmental factors

Humidity, Kitchen smoke, dust, Season.

Medical and Clinical characteristics

URTI, Sleep apnea, Missing follow-up / appointments,

Operational definitions

Those who present with cough, wheezing and difficulty of breathing and diagnosed asthma by physician [ 10 ].

Acute Asthma Attack

Those who present with worsening of wheezing, shortness of breath, cough, chest tightness and diagnosed as acute asthma attack by physician [ 10 ].

Smoker:( daily smoker and non-daily smoker) those who currently smokes or those who quit smoking less than 1 year before the assessment [ 10 ].

Passive smoker: Smoke inhaled involuntarily by non-smokers [ 11 ].

Nonsmoker: Respondents who report never smoke those who quit smoking greater than 1 year before the assessment.

Vigorous activity: participants doing activity more than 10 min continuously, that increases breathing, like carrying or lifting heavy loads, digging or construction work, cutting fire wood [ 11 ].

Data collection tool

Structured questionnaire was used to collect the data which was adapted from different literatures [ 9 , 12 , 13 , 14 ]. The questionnaire contains four parts: socio-demographic, environmental factors, behavioral factors, and Medical &Clinical characteristics.

Data collection procedures

Data were collected from cases and controls using structured questionnaire and checklists through face-to-face interview and from patients chart review respectively.

Twelve BSc nurses as data collectors and three senior nurse supervisors were recruited for the data collection, Then data from cases were collected after they take all the necessary medical care and they recover from their attack whereas from the controls data were collected after they have completed their assessment by physician and at the last record reviews from their chart. Participants were identified as having upper respiratory tract infection and Obstructive sleep apnea from their medical charts which was diagnosed by senior physicians. This is to mean that, it was just suspected clinically by the time of the acute event. The reason we obeyed to use clinically diagnosis for obstructive sleep apnea is that, there is no accesses of modern diagnostic modality like polysomnography in the study area which was Tigray regional state not only in the study area but also in the country Ethiopia as a whole. The evaluation protocol that we use were a single evaluation visit for each case and even those who have follow-up and developed acute asthma attack were included .

Data quality control techniques

Data quality was ensured by training of data collectors and supervisors before data collection period. 5% of the questionnaire was pre-tested in Shire Hospital which was not included in the actual data collection. Based on the findings of the pre-test, questionnaire was modified. The filled questionnaire was checked for completeness and accuracy by data collectors, supervisors and principal investigator each day.. The questionnaire was translated into Tigrigna language for better understanding to both the data collectors and respondents and then back translated into English by another expert to ensure accuracy and consistency.

Data analysis procedures

Data were entered in to Epi data version 3.1 and analyzed using SPSS version 23.0. The degree of association between independent and dependent variables were assessed using adjusted odds ratio with 95% confidence interval. Variables < 0.25 p -value in binary logistic regression were entered to multivariable logistic regression model to control the potential confounding variables. Variables with p-value less than 0.05 in multivariable logistic regression model were taken as significantly associated factors. Variance inflation factor (VIF) was used to assess Multicollinearity between the independent variables. Hosmer and Lemeshow goodness fit model were used to check model fitness.

Ethical consideration

Ethical clearance was obtained from Mekelle University College of health sciences institutional review board (IRB). A subsequent permission was also obtained from Tigray teaching hospitals. Respondents were informed about the purpose of the study and the interview was conducted after receiving the written consent from participants. Confidentiality of the data/information was secured and was not used for other purposes.

Sociodemographic characteristic of study participants

Among the participants, 67.7% (65) of the cases and 60.6% (117) of the controls were females. The median ages of participants were 43 years with interquartile range (IQR) of 26.5 years among cases and 43 median ages with interquartile range (IQR) of 22 for control.

The educational status, one third 33.3% (32) of the cases and 24.9% (48) of the controls were collage and above, where as 14.6% (14) of the cases and 16.6% (32) of the controls were unable to read and write. The majority of the cases 63.5% (61) and 60.1% (116) of the controls were married (Table  1 ).

Behavioral characteristics of study participants

Among the participants, 2.1% (2) of the cases and 1.1% (6) of the controls were smokers.in parallel with this 3.1% of the cases and 4.7% of the control were passive smokers. Regarding vigorous activity 37.5% (36) of the cases and 23.8% (46) of the controls were do vigorous activity. Majority of the participants 72.9% (70) of the cases and 58% (112) of the controls were doing exercise.

Medical & clinical characteristics of study participants

Among the participants, 44.8% (43) of the cases and 13.5% (26) of the controls had Upper Respiratory Tract Infections (URTI) and 29.2% (28) of the cases and few of the controls 5.2% (10) had obstructive sleep apnea.

Among the participants, 31.3% (30) of the cases and 20.7% (40) of the controls had Missing follow up.

Environmental characteristics of study participants

Regarding the seasons of a year, spring season (April, May, June) were the season with high percentage 37.7% (109) of acute asthma attack than the autumn season. Majority of the participants 79.5% (230) were open their window/door while they were cooking. Concerning the kitchen of the participants 32.3% (31) of the cases and 20.2% (39) of the control’s kitchen have no kitchen smoke (chimney) (Table  2 ).

Unmatched case control study with 96 cases and 193 controls was conducted to show the determinants of acute asthma attack among adult asthmatic patients visiting general hospitals of central zone, Tigray, Ethiopia.

Having URTI increases the occurrence of acute asthma attack 6.8 times [AOR = 6.835,95% CI = 3.285,14.222] than those who have not upper respiratory tract infection (URTI) (Table 3 ).

This is consistent with the studies conducted in Gondar, Uganda and Ireland [ 9 , 12 , 15 ].

The association might be due to the mechanism of airway inflammation,mucus hyper secretion, and bronchial hyper responsiveness [ 16 ]. In contrast to this study upper respiratory tract infections was no risk factor for acute asthma exacerbation on the study conduct in Pretoria and New Zealand [ 14 , 17 ]. This difference might be due to difference in health care seeking behavior of the participants in this study.

This study revealed that, sleep apnea was strongly associated with the occurrence of acute asthma exacerbation. Those who have sleep apnea are 9.5 times more likely to run in to acute asthma exacerbation than those who have not sleep apnea [AOR = 9.524, 95% CI = 3.563, 25.460].

This findings is comparable with a study done in Gondar and USA [ 12 , 18 ].

The possible reason is the fact that sleep apnea lead to the worsening of asthma control in patients with concomitant sleep apnea secondary to bronchoconstriction as a result of increase vagal tone while sleeping [ 19 ].

The result of this study shows that the odds of having acute asthma in Spring season was 2.2 times higher than the odds of having acute asthma attack in the autumn season [AOR = 2.204,95% CI = 1.011,4.805]. This is consistent with a study conducted in Canada in which spring season was triggering factor for asthma exacerbation [ 20 ]. Seasonal variation is the risk factors for acute asthma attack especially pollens appearing seasons like spring season exacerbates acute asthma attack. This may be due to the reason that during the spring, tree pollen, mold spores and grass have the power to inflame and narrow the air passages of people who have asthma [ 21 ].

The result of this study was different from a study conducted in Spain which was resulting winter season as higher risk of developing acute asthma attack [ 22 ]. The difference could be arisen from seasonal variation between the study areas, due to the influence of temperature and humidity.

In this study, Kitchen smoke (chimney) is highly associated with risk of acute asthma exacerbation.

Those who have no kitchen smoke in their kitchen were 2.3 times at risk to develop acute asthma exacerbation [AOR = 2.307,95%CI = 1.010,5.2725] than those who have kitchen smoke. This finding is comparable with the study conducted in India [ 13 ]. This is due to the fact that kitchen smoke (chimney) is a way that helps in removing the smokes and fumes from the kitchen and making it clean and smoke free which result in reduction of indoor air pollution and prevents acute asthma exacerbation [ 23 ]. Inhaling harmful smoke can inflame lungs and airway, causing them to swell and block oxygen. This can lead to acute asthma exacerbation [ 24 ]

In this study the determinant factors of acute asthma attack were spring season, presence of upper respiratory tract infection (URTI), having no Kitchen smoke in their kitchen and having obstructive sleep apnea.

Limitations

The diagnosis of respiratory tract infections and sleep apnea was empirical (without laboratory) and all measures used were based on self-reporting, this might end up with social desirability bias. This study may have recall bias, since some of the information was based on the recall of the study participants. Unavailability of studies on acute asthma exacerbation.

Availability of data and materials

The datasets used and analyzed during the current study are presented within the manuscript and available from the corresponding author on reasonable request.

Abbreviations

Adjusted Odds Ratio

Confidence Interval

Crude Odds Ratio

Central Statistical Agency

Interquartile Range

National Health Interview Survey

Out Patient Department

Tigray Region Health Development Agency

Upper Respiratory Tract Infection

Variance Inflation Factor

Adams, JY., Sutter, M.E. & Albertson, T.E. The Patient with Asthma in the Emergency Department. Clinic Rev Alleg Immunol 43, 14-29 (2012). https://doi.org/10.1007/s12016-011-8273-z .

Shah R , Saltoun CA . Chapter 14: Acute severe asthma (status asthmaticus). Allergy and Asthma Proceedings, 2012; 33(Supplement 1):S47-S50. Acute severe asthma. InAllergy and Asthma proceedings 2012 (Vol. 33, No. 3, p. 47). OceanSide Publications..

The Global Asthma Report 2018. Auckland, New Zealand: Global Asthma Network, 2018.

Adeloye D, Chan KY, Rudan I, Campbell H. An estimate of asthma prevalence in Africa: a systematic analysis. Croat Med J. 2013;54(6):519–31.

Article   Google Scholar  

Park HW, Tantisira KG. Genetic signatures of asthma exacerbation. Allergy, Asthma Immunol Res. 2017;9(3):191–9.

Article   CAS   Google Scholar  

Stewart WF, Ricci JA, Chee E, Morganstein D. Lost productive work time costs from health conditions in the United States: results from the American Productivity Audit. J Occup Environ Med. 2003;45(12):1234–46.

CDC , National Health Interview Survey (NHIS) 2014.

Google Scholar  

Jackson DJ, Sykes A, Mallia P, Johnston SL. Asthma exacerbations: Origin, effect and prevention. J Allergy Clin Immunol. 2011;128:1165–74.

Sanya RE, Kirenga BJ, Worodria W, Okot-Nwang M. Risk factors for asthma exacerbation in patients presenting to an emergency unit of a national referral hospital in Kampala, Uganda. Afr Health Sci. 2014;14(3):707–15.

Riley L, Gouda H, Cowan M. Noncommunicable Diseases Progress Monitor, 2017: World Health Organization; 2017.

Ethiopia steps report on risk factors for Chronic Non Communicable Diseases and prevalence of selected NCDs. Ethiopia public Health institute. 2016 . .

Belachew SA, Erku DA, Yimenu DK, Gebresillassie BM. Assessment of predictors for acute asthma attack in asthmatic patients visiting an Ethiopian hospital: are the potential factors still a threat? Asthma Res Pract. 2018;4(1):8.

Sharma GL, Choudhary GS. Assessment of Risk Factors for Acute Asthma Attack in Asthmatic Patients: A Hospital Based Study. Int Arch BioMed Clin Res. 2018;4(4):46–8.

Geyser M, Rheeder P. Risk factors precipitating exacerbations in adult asthma patients presenting at Kalafong Hospital, Pretoria. S Afr Fam Pract. 2008;50(4):67–e.

Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ. 2003;307(6910):982–6.

Fraenkel DJ, Bardin PG, Sanderson G, et al. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med. 2009;151(3):879–86.

Kolbe J, Fergusson W, Vamos M, Garrett J. Case-control study of severe life-threatening asthma (SLTA) in adults. Thorax. 2002;57(4):317–22.

De-Lei K, Zheng Q, Hui S, Hong Y. Association of Obstructive Sleep Apnea with Asthma exacerbation; 2017.

Alkhalil M, Schulman E, Getsy J. Obstructive sleep apnea syndrome and asthma: what are the links? J Clin Sleep Med. 2009;5(01):71–8.

Tarlo S, Broder I, Corey P, et al. A case-control study of the role of cold symptoms and other historical triggering factors in asthma exacerbations. Can Respir J. 2000;7(1):42–8.

Surrena H, editor. Handbook for Brunner and Suddarth’s textbook of medical-surgical nursing. Lippincott Williams & Wilkins; 2010.

Pola-Bibian B, et al. Asthma exacerbations in a tertiary hospital: clinical features, triggers, and risk factors for hospitalization. J Investig Allergol Clin Immunol. 2016: 0 . https://doi.org/10.18176/jiaci.0128 .

Eisner M, et al. Exposure to indoor combustion and adult asthma outcomes: environmental tobacco smoke, gas stoves, and woodsmoke. Thorax. 2002;57(11):973–8.

Smeltzer SC, Bare BG, Hinkele JL, Cheever KH. Brunner and Suddath’s Text Book of Medical Surgical 2010. Wolters Kluwer Health:Lippincott Williams & Wilkins. Nursing, vol. 1. 12th ed. p. 622.

Download references

Acknowledgments

Authors thanks to public general hospitals of central zone Tigray, Ethiopia for their co-operation, to data collectors, supervisors, for the health staffs of the hospitals and to the study participants for their valuable information.

Not applicable.

Author information

Authors and affiliations.

Department of adult health nursing ,school of Nursing, Aksum University, Aksum, Ethiopia

Melaku Negash & Degena Bahrey Tadesse

Department of Psychiatric, Mekelle University, Mekelle, Ethiopia

Hagos Tsegabrhan

Adwa General Hospital, Adwa, Ethiopia

Teklit Meles

Department of midwifery, Aksum University, Aksum, Ethiopia

Gebreamlak Gidey

college of medicine and health science, Adigrat university, Adigrat, Ethiopia

Yemane Berhane

Maternity and reproductive health nursing, Mekelle University, Mekelle, Ethiopia

Kibrom Berhanu

Department of Emergency and critical care nursing, Mekelle University, Mekelle, Ethiopia

Tsgalem Haylemaryam

You can also search for this author in PubMed   Google Scholar

Contributions

MN: was made substantially contributions to conceived and designed the study, analysis the data, methodology, data interpretation and wrote the final manuscript.TM, DB, GG,YB, had equally contributed to analysis and interpretation of the data. Whereas HT, TH and KB substantial contribution in reviewing overall the study in analysis, interpretation of data, have drafted the manuscript and substantively revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Melaku Negash .

Ethics declarations

Ethics approval and consent to participate.

Ethical clearance was obtained from Mekelle University College of health sciences institutional review board (IRB). Official supportive letters were obtained from Regional Health Bureau (TRHB) and central zone health office. Respondents were informed about the purpose of the study and the interview was conducted after receiving the written consent from participants. The right of participants to withdraw from the study at any time, without any precondition were secured and participants were informed. Confidentiality of the data/information was secured and was not used for other purposes. No personal identifiers was used on the questionnaire. To maintain confidentiality, data collector was recruited from the study unit.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1..

Annex I: English version structured interview questionnaire.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Negash, M., Tsegabrhan, H., Meles, T. et al. Determinants of Acute Asthma Attack among adult asthmatic patients visiting hospitals of Tigray, Ethiopia, 2019: case control study. asthma res and pract 6 , 1 (2020). https://doi.org/10.1186/s40733-020-00054-w

Download citation

Received : 07 December 2019

Accepted : 17 March 2020

Published : 03 April 2020

DOI : https://doi.org/10.1186/s40733-020-00054-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Acute asthma attack
  • Determinants

Asthma Research and Practice

ISSN: 2054-7064

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

asthma attack case study exam 2

Clerkship Directors in Emergency Medicine Logo | SAEM

Authors: Tokunbo Adeniyi MD, Katrin Takenaka, MD , McGovern Medical School at the University of Texas Health Science Center at Houston 

Editor: Al’ai Alvarez, MD (Assistant Professor), Stanford University; Palo Alto, CA

Original Author: Matt Tews; Medical College of Wisconsin; Milwaukee, WI

Original Editor: Scott Sherman, John H. Stroger Hospital; Chicago, IL

Update: November 2019

A 29-year-old woman with history of asthma presents with cough and shortness of breath after a recent upper respiratory tract infection. She has been using her albuterol inhaler every 2-4 hours at home; however, she continues to wheeze and feel short of breath. She has never had to be admitted to the hospital for an asthma exacerbation, but she does tend to use her inhaler every few days when she feels short of breath or has wheezes. Triage vital signs include T 98.8F, BP 125/76, HR 115, RR 26, 93% oxygen saturation on room air. On exam, she is alert and able to speak in full sentences but noticeably tachypneic when talking.  Her pulmonary exam reveals bilateral end-expiratory wheezes with bilateral restricted air movement. She is not using her accessory muscles to breathe. 

  • Describe the varying clinical presentations of an acute asthma exacerbation
  • Explain the clinical approach to a patient with an asthma exacerbation, including primary survey, diagnostic tests, and treatment 
  • Determine appropriate patient disposition depending on the severity of the exacerbation and response to emergency department (ED) treatment

Introduction

Asthma affects over 18 million adults and more than 6 million children in the US. Thus acute exacerbations are common ED presentations, accounting for 1.6 million visits per year in the US. Patients with acute asthma exacerbations present with symptoms ranging from cough and chest tightness to dyspnea and audible wheezes to respiratory failure. A common medical adage states that “not all that wheezes is asthma.” Several other conditions can mimic asthma, including chronic obstructive pulmonary disease (COPD), acute decompensated heart failure (ADHF), acute coronary syndrome, pulmonary embolism, pneumonia, pneumothorax, and airway foreign body. However, acute asthma can usually be diagnosed with a thorough history and physical exam.

Initial Actions and Primary Survey

When approaching a patient with an asthma exacerbation, a clinician needs to quickly evaluate the patient’s airway, breathing, and circulatory status; determine the severity of this episode; and decide whether the patient needs immediate airway support including intubation.  Factors such as vital signs (especially respiratory rate and pulse oximetry), signs of respiratory distress (such as ability to speak and use of accessory muscles), pulmonary exam (including wheezes and amount of air movement), and mental status are important components of this initial assessment/primary survey. Remember that lack of wheezing can be an ominous sign in a patient with respiratory distress and poor air movement. 

If the patient’s respiratory status allows, a history should be obtained, focusing on current symptoms, prior episodes, known precipitants, home asthma control regimen, medication compliance, and other comorbidities. Risk factors for death from asthma include prior intubation and/or ICU admission, recent ED visit or hospitalization for asthma, recent/last course of steroids, frequent asthma-related ED visits or admissions, frequent use of “rescue” short-acting beta agonists (SABAs) such as albuterol, and cardiopulmonary comorbidities. It is important to note that a lack of risk factors does not eliminate the risk of severe morbidity and mortality.

As mentioned above, the exam should focus on assessing the severity of disease and identifying signs of respiratory distress/failure. The clinician can use other portions of the exam to identify/exclude other causes of dyspnea (e.g., neck exam for jugular venous distention, cardiac exam for murmurs or gallops, extremity exam for peripheral pulses or edema). 

Depending on the severity of the current exacerbation, a patient may initially require continuous cardiac monitoring and/or pulse oximetry, supplemental oxygen, initiation of therapy with inhaled SABAs and anticholinergics, administration of steroids, use of non-invasive positive pressure ventilation (NIPPV), and/or rapid sequence induction (RSI) and intubation. 

Presentation

Asthma is a chronic inflammatory condition resulting in hyperresponsiveness to environmental and infectious exposures.  Airway smooth muscle obstruction, bronchospasm, and mucosal edema then ensue. An acute exacerbation is usually characterized by progressive cough, shortness of breath, chest tightness, and wheezing. 

Common triggers include infection (upper respiratory infection in adults, respiratory syncytial virus/parainfluenza in children), exposure to cold or dry environments, stress, physical exertion, or inhaled irritants (e.g., dust, cigarette smoke, air pollution). 

Diagnostic Testing

The ED diagnosis of acute asthma is usually made by thorough history taking and physical examination. Diagnostic testing is often unnecessary unless the diagnosis is uncertain or a complication is suspected. Furthermore, testing should not delay the initiation of treatment. 

Laboratory testing:  A complete blood count may be obtained if infection is suspected; however, its usefulness is limited as the white blood cell count may be elevated in acute asthma without any underlying infection. For patients who take theophylline, a level may be drawn although it would not help determine further management. A basic metabolic panel may be helpful in patients with kidney disease, those on diuretics, or those who will require multiple doses of SABAs (as beta agonists can lower potassium levels by shifting it intracellularly). 

Blood gas: Although blood gases are unnecessary in most patients with an asthma exacerbation, they can provide useful information in those who remain hypoxic despite supplemental oxygen, are unresponsive to initial therapy, or are in severe respiratory distress. Blood gases are used to assess for hypoxia, hypo-/hypercarbia, and acidosis. Hypocarbia and respiratory alkalosis are expected findings in tachypneic patients while normal or elevated pCO2 levels and metabolic acidosis are markers of impending respiratory failure. Although blood gas results can aid in identifying respiratory failure, they should be used in conjunction with a patient’s clinical status to determine the need for intubation. While venous and arterial blood gases are equivalent in their ability to assess pCO2 and pH, venous blood gases are less painful to obtain and, therefore, may be preferred unless accurate pO2 levels are necessary. 

Chest radiography: Chest x-ray (CXR) is not routinely indicated for patients with acute asthma. In most cases, the CXR is normal or shows hyperinflation or atelectasis, and the results would not affect any therapeutic decisions. It can aid in identifying/excluding alternative diagnoses such as pulmonary edema or pneumonia. Additionally, it can be useful if a complication such as pneumothorax or pneumomediastinum is suspected.

Peak flow measurements:  These can be useful bedside tests to aid in the assessment of disease severity and response to treatment as well as in final disposition decisions They are measured using a peak expiratory flow rate (PEFR) meter or a handheld spirometry machine that determines the forced expiratory volume in one second (FEV1). Both devices measure velocity of air flow and degree of airway obstruction. Although these devices are simple and inexpensive to use, they are effort dependent. As a result, they may have limited utility in pediatric patients and others who are unable to perform the test. If used, serial measurements should be obtained (e.g., upon initial presentation and 1 hour after each SABA treatment). Measurements during an acute exacerbation can be compared to a patient’s baseline, if known. Normal predicted peak flow rates are based on age, gender, and height. Tables of normal predicted peak flow rates are easily available online. Peak flow measurements should only be used in conjunction with other indicators of clinical status to make therapeutic and disposition decisions.

Therapy is determined by the severity of the exacerbation based on vital signs, work of breathing, and PEF (peak expiratory flow) or FEV1 (forced expiratory volume 1 sec). Mild exacerbations are characterized by normal vital signs (including pulse oximetry > 90%), mild wheezes and minimal work of breathing, and PEF or FEV1 > 70% of predicted. Patients with moderate exacerbations demonstrate an elevated heart rate and respiratory rate with pulse oximetry > 90%, increased work of breathing, and PEF or FEV1 40-69% of predicted. Those with severe acute asthma present with abnormal vital signs including pulse oximetry < 90%, significantly increased work of breathing, altered mentation, and PEF or FEV1 < 40% of predicted. 

The goals of treatment of acute asthma include: 

  • Correction of significant hypoxemia
  • Rapid reversal of airflow obstruction
  • Reduction of the likelihood of relapse 

Patient with mild to moderate exacerbations may only require inhaled SABAs and ipratropium and steroids while those with severe exacerbations may also benefit from IV magnesium. Those in more severe distress may need NIPPV or intubation.

Individual treatment options are discussed below.

β2-adrenergic agonists: SABAs (most commonly albuterol) are first line therapy for acute asthma. They can be delivered via nebulizer or metered-dose inhaler (MDI) plus spacer. MDIs with spacers are as effective as nebulizers although MDIs without spacers require more supervision to ensure proper usage. Nebulized albuterol is usually given 2.5-5 mg every 20 minutes for up to 3 doses, followed by 2.5-10 mg every 1-4 hours as needed. Continuous nebulized albuterol may be used in patients with severe exacerbations. The dose of “continuous” albuterol is 10-15 mg/hr (0.5 mg/kg/hr in children). Onset is 5-15 minutes with peak effect within 2 hours. Adverse effects may include tremor and tachycardia. Additionally mild hypokalemia may occur due to potassium being shifted intracellularly.

Levalbuterol is another SABA that can be used to treat acute asthma. However, it does not provide any clinical advantage over albuterol and is more costly. 

Although important in maintenance therapy, long-acting beta agonists (e.g., salmeterol) do not have a place in acute exacerbations. 

Anticholinergic agents (ipratropium): Inhaled ipratropium is used in moderate to severe exacerbations. Studies have shown that combining ipratropium with SABAs provides an advantage over using it as a single agent. Due to its anticholinergic effects, it may inhibit airway secretions. It can be combined with albuterol in a nebulized form (Duoneb) or in an MDI (Combivent). It is administered as 500 microgram (2.5 mL) every 20 minutes up to 3 doses, followed by 2.5 mL every 6 hours as needed. There is no apparent benefit beyond 3 back-to-back treatments.

Corticosteroids: These are another fundamental component of acute asthma treatment. They are administered to reduce airway inflammation and obstruction as well as to decrease the rate of relapse. Early steroid administration is correlated with decreased rates of hospitalization, perhaps in part due to the delayed onset of action (4-6 hours). Steroids may be given orally or intravenously (IV) with equal efficacy.  In general, the oral form is preferred unless a patient’s clinical condition warrants IV administration (e.g., inability to swallow or tolerate oral medications, severe respiratory distress). All steroids can produce similar side effects (i.e., hyperglycemia, hypertension, decrease in potassium, fluid retention, and even mood symptoms) although short courses of steroids convey little risk of serious adverse events. 

Common oral steroids include prednisone, methylprednisolone, prednisolone, and dexamethasone. Dexamethasone, hydrocortisone and methylprednisolone are frequently encountered IV forms. The optimal dosage and duration of therapy is somewhat controversial although prednisone 40-80 mg/day orally or methylprednisolone 40-80 mg/day IV are common. The initial dose is usually followed by a 3-10 day “burst” of continued steroids depending on the severity of the exacerbation.  Dexamethasone can be administered once in the ED and once in the next 1-2 days with equivalent effect to a 3-5 day burst of prednisone. 

Although inhaled corticosteroids are not recommended for acute asthma, they are useful to help prevent acute exacerbations. While they are not currently recommended in an acute asthma exacerbation, they should be considered in patients with frequent exacerbations or frequent need to use SABAs.

Epinephrine: The beta-agonist activity of epinephrine causes bronchodilation. It is useful as an adjunct therapy in severe acute asthma, especially if not responsive to initial treatment with SABAs. Although epinephrine can be administered intramuscularly (IM) or subcutaneously (SC), studies have shown that IM epinephrine provides faster and more consistent delivery of medication than SC. The adult and pediatric doses of 1:1000 are 0.3-0.5 mg of 1:1000 IM and 0.01 mg/kg (up to 0.3-0.5 mg) IM, every 20 minutes for up to 3 doses.

Magnesium: Although magnesium sulfate has shown some benefit in severe asthma exacerbations, the literature does not support its routine use, especially in mild to moderate flares.  It appears to work through relaxation of the smooth muscles in the airways. The usual dose is 2 gm IV over 20 minutes, and must be given with continuous albuterol nebulization.

Heliox: This is a helium-oxygen mixture (most commonly 80:20 or 70:30) and may be used as adjunctive therapy in severe exacerbations. Because helium is less dense than oxygen, it can travel through smaller airways with more laminar flow, resulting in increased oxygen or inhaled medication delivery. In turn, this is thought to decrease the work of breathing. Hypoxic patients may not tolerate heliox in light of its lower oxygen concentration. 

Agents without routine benefit in acute asthma: Antibiotics should be reserved for patients with evidence of bacterial infection as routine antibiotic dosing provides no therapeutic benefits. 

Theophylline is not recommended in the treatment of acute asthma as it does not provide any additional clinical benefit and is associated with adverse effects such as tremors, nausea, anxiety, and tachydysrhythmia. If a patient is already taking theophylline, a serum level should be measured since the drug has a narrow therapeutic index.

Non-invasive positive pressure ventilation: NIPPV can be helpful in severe acute asthma by decreasing the work of breathing and improving recruitment of alveoli. Another theory is that positive pressure helps push albuterol in the periphery, and thus further help with opening of the smaller airways. Although the use of NIPPV in acute asthma appears promising, further study is needed to determine its optimal role in acute asthma management. 

Intubation: Mechanical ventilation may be required in patients with severe asthma exacerbations and respiratory failure (including hypoxia and/or hypercarbia despite intervention)/arrest, respiratory fatigue, or altered mentation. It is important to remember that mechanical ventilation is not used in isolation but in conjunction with the other above-mentioned therapies. Ketamine may be useful as an induction agent due to its bronchodilatory effects, although anticipate increase in secretions in using this induction agent. Consider using glycopyrrolate. Managing an intubated asthmatic presents several challenges because mechanically-ventilated asthmatics can develop high lung pressures due to breath-stacking. This may result in barotrauma, pneumothorax or hypotension (due to decreased venous return). Permissive hypercapnia and prolonged expiratory phase in mechanical ventilation may help avoid this pitfall.

Disposition: The decision to discharge or admit a patient with acute asthma is based on their clinical course in the ED, response to treatment, and ability to access outpatient medications and obtain outpatient follow-up. Patients with persistent tachypnea, increased work of breathing, hypoxia, and/or PEF or FEV1 < 70% of predicted should be considered for hospitalization. It is important to recognize the transient hypoxia immediately after treatment with albuterol. This should improve upon brief observation. Persistent hypoxia is concerning. 

If patients are deemed safe for discharge, they should go home with appropriate follow-up and a written asthma action plan, including instructions on the appropriate use of medications, and removal of any environmental precipitants. They should also have access to SABAs and receive a prescription for continued steroids (most commonly a steroid “burst” as described above). 

Pearls and Pitfalls

  • “Not all that wheezes is asthma, and not all asthma wheezes.” The differential diagnoses for acute asthma includes COPD, ADHF, acute coronary syndrome, pulmonary embolism, pneumonia, pneumothorax, and airway foreign body. Furthermore, patients with severe asthma may not move enough air to be able to produce wheeze.
  • Acute asthma is a clinical diagnosis, and laboratory tests and adjunctive studies are not routinely required unless there is a diagnostic dilemma or a complication is suspected
  • Objective measures of lung function such as PEF and FEV1 can be useful bedside tests to aid in the assessment of disease severity and response to treatment as well as in final disposition decisions
  • Mainstays of treatment include SABAs and corticosteroids. Concurrent inhaled ipratropium may provide additional benefit.  Consider early administration of steroids as they have a delayed onset of action. 
  • Adjunctive therapy for severe exacerbations may include magnesium sulfate, epinephrine, heliox, and/or NIPPV.
  • Most patients can be managed medically. Consider intubation if the patient is in respiratory arrest or if the patient has impending respiratory failure and has failed other therapies. If intubation is necessary, permissive hypercapnia may help avoid the complications of barotrauma and hypotension.

The patient receives 3 rounds of nebulized albuterol and ipratropium as well as 50 mg of oral prednisone . Initially she remains tachypneic although her work of breathing improves and pulse oximetry is 94% on room air.  On re-evaluation, she has persistent wheezing, so additional albuterol nebulizer treatments are ordered. After 5 hours in the ED, she has occasional scattered wheezing, a normal respiratory rate, and 98% room air saturation.  She is able to ambulate in the ED without any respiratory distress or hypoxia. She is discharged home with a refill for her albuterol MDI, a prescription for 5 additional days of oral prednisone, a written action plan, and follow up with her primary care physician.

Camargo CA, Rachelefsky G, Schatz M. Managing Asthma Exacerbations in the Emergency Department: summary of the National Asthma Education and Prevention Program Expert Panel Report 3 guidelines for the management of asthma exacerbations. Proc Am Thorac Soc. 2009; 6: 357-66. (PMID: 19675345)

Hodder R, Lougheed D, Rowe  BH, FitzGerald JM, Kaplan AG, McIvor A. Management of Acute Asthma in Adults in the Emergency Department: Nonventilatory Management. CMAJ. 2010; 182: E55-E67. (PMID: 19858243)

Rodrigo GJ, Rodrigo C, Hall JB., Acute Asthma in Adults. Chest. 2004; 125:1081-1102. (PMID: 15006973)

Schauer SG, Cuenca PJ, Johnson JJ, Ramirez S. Management of Acute Asthma in the Emergency Department. Emerg Med Pract. 2013;15:1-28. (PMID: 24040898)

  • Join our Mailing List

Working locally in primary care and collaborating globally to improve respiratory health

Clinical case study - asthma, clinical case study - asthma, resource information.

  • Disease management

Case Study: Managing Severe Asthma in an Adult

—he follows his treatment plan, but this 40-year-old male athlete has asthma that is not well-controlled. what’s the next step.

By Kirstin Bass, MD, PhD Reviewed by Michael E. Wechsler, MD, MMSc

This case presents a patient with poorly controlled asthma that remains refractory to treatment despite use of standard-of-care therapeutic options. For patients such as this, one needs to embark on an extensive work-up to confirm the diagnosis, assess for comorbidities, and finally, to consider different therapeutic options.

image

Case presentation and patient history

Mr. T is a 40-year-old recreational athlete with a medical history significant for asthma, for which he has been using an albuterol rescue inhaler approximately 3 times per week for the past year. During this time, he has also been waking up with asthma symptoms approximately twice a month, and has had three unscheduled asthma visits for mild flares. Based on the  National Asthma Education and Prevention Program guidelines , Mr. T has asthma that is not well controlled. 1

As a result of these symptoms, spirometry was performed revealing a forced expiratory volume in the first second (FEV1) of 78% predicted. Mr. T then was prescribed treatment with a low-dose corticosteroid, fluticasone 44 mcg at two puffs twice per day. However, he remained symptomatic and continued to use his rescue inhaler 3 times per week. Therefore, he was switched to a combination inhaled steroid and long-acting beta-agonist (LABA) (fluticasone propionate 250 mcg and salmeterol 50 mcg, one puff twice a day) by his primary care doctor.

Initial pulmonary assessment Even with this step up in his medication, Mr. T continued to be symptomatic and require rescue inhaler use. Therefore, he was referred to a pulmonologist, who performed the initial work-up shown here:

  • Spirometry, pre-albuterol: FEV1 79%, post-albuterol: 12% improvement
  • Methacholine challenge: PC 20 : 1.0 mg/mL
  • Chest X-ray: Within normal limits

Continued pulmonary assessment His dose of inhaled corticosteroid (ICS) and LABA was increased to fluticasone 500 mcg/salmeterol 50 mcg, one puff twice daily. However, he continued to have symptoms and returned to the pulmonologist for further work-up, shown here:

  • Chest computed tomography (CT): Normal lung parenchyma with no scarring or bronchiectasis
  • Sinus CT: Mild mucosal thickening
  • Complete blood count (CBC): Within normal limits, white blood cells (WBC) 10.0 K/mcL, 3% eosinophils
  • Immunoglobulin E (IgE): 25 IU/mL
  • Allergy-skin test: Positive for dust, trees
  • Exhaled NO: Fractional exhaled nitric oxide (FeNO) 53 parts per billion (pbb)

Assessment for comorbidities contributing to asthma symptoms After this work-up, tiotropium was added to his medication regimen. However, he remained symptomatic and had two more flares over the next 3 months. He was assessed for comorbid conditions that might be affecting his symptoms, and results showed:

  • Esophagram/barium swallow: Negative
  • Esophageal manometry: Negative
  • Esophageal impedance: Within normal limits
  • ECG: Within normal limits
  • Genetic testing: Negative for cystic fibrosis, alpha1 anti-trypsin deficiency

The ear, nose, and throat specialist to whom he was referred recommended only nasal inhaled steroids for his mild sinus disease and noted that he had a normal vocal cord evaluation.

Following this extensive work-up that transpired over the course of a year, Mr. T continued to have symptoms. He returned to the pulmonologist to discuss further treatment options for his refractory asthma.

Diagnosis Mr. T has refractory asthma. Work-up for this condition should include consideration of other causes for the symptoms, including allergies, gastroesophageal reflux disease, cardiac disease, sinus disease, vocal cord dysfunction, or genetic diseases, such as cystic fibrosis or alpha1 antitrypsin deficiency, as was performed for Mr. T by his pulmonary team.

Treatment options When a patient has refractory asthma, treatment options to consider include anticholinergics (tiotropium, aclidinium), leukotriene modifiers (montelukast, zafirlukast), theophylline, anti-immunoglobulin E (IgE) antibody therapy with omalizumab, antibiotics, bronchial thermoplasty, or enrollment in a clinical trial evaluating the use of agents that modulate the cell signaling and immunologic responses seen in asthma.

Treatment outcome Mr. T underwent bronchial thermoplasty for his asthma. One year after the procedure, he reports feeling great. He has not taken systemic steroids for the past year, and his asthma remains controlled on a moderate dose of ICS and a LABA. He has also been able to resume exercising on a regular basis.

Approximately 10% to 15% of asthma patients have severe asthma refractory to the commonly available medications. 2  One key aspect of care for this patient population is a careful workup to exclude other comorbidities that could be contributing to their symptoms. Following this, there are several treatment options to consider, as in recent years there have been several advances in the development of asthma therapeutics. 2

Treatment options for refractory asthma There are a number of currently approved therapies for severe, refractory asthma. In addition to therapy with ICS or combination therapies with ICS and LABAs, leukotriene antagonists have good efficacy in asthma, especially in patients with prominent allergic or exercise symptoms. 2  The anticholinergics, such as tiotropium, which was approved for asthma in 2015, enhance bronchodilation and are useful adjuncts to ICS. 3-5  Omalizumab is a monoclonal antibody against IgE recommended for use in severe treatment-refractory allergic asthma in patients with atopy. 2  A nonmedication therapeutic option to consider is bronchial thermoplasty, a bronchoscopic procedure that uses thermal energy to disrupt bronchial smooth muscle. 6,7

Personalizing treatment for each patient It is important to personalize treatment based on individual characteristics or phenotypes that predict the patient's likely response to treatment, as well as the patient's preferences and practical issues, such as adherence and cost. 8

In this case, tiotropium had already been added to Mr. T's medications and his symptoms continued. Although addition of a leukotriene modifier was an option for him, he did not wish to add another medication to his care regimen. Omalizumab was not added partly for this reason, and also because of his low IgE level. As his bronchoscopy was negative, it was determined that a course of antibiotics would not be an effective treatment option for this patient. While vitamin D insufficiency has been associated with adverse outcomes in asthma, T's vitamin D level was tested and found to be sufficient.

We discussed the possibility of Mr. T's enrollment in a clinical trial. However, because this did not guarantee placement within a treatment arm and thus there was the possibility of receiving placebo, he opted to undergo bronchial thermoplasty.

Bronchial thermoplasty  Bronchial thermoplasty is effective for many patients with severe persistent asthma, such as Mr. T. This procedure may provide additional benefits to, but does not replace, standard asthma medications. During the procedure, thermal energy is delivered to the airways via a bronchoscope to reduce excess airway smooth muscle and limit its ability to constrict the airways. It is an outpatient procedure performed over three sessions by a trained physician. 9

The effects of bronchial thermoplasty have been studied in several trials. The first large-scale multicenter randomized controlled study was  the Asthma Intervention Research (AIR) Trial , which enrolled patients with moderate to severe asthma. 10  In this trial, patients who underwent the procedure had a significant improvement in asthma symptoms as measured by symptom-free days and scores on asthma control and quality of life questionnaires, as well as reductions in mild exacerbations and increases in morning peak expiratory flow. 10  Shortly after the AIR trial, the  Research in Severe Asthma (RISA) trial  was conducted to evaluate bronchial thermoplasty in patients with more severe, symptomatic asthma. 11  In this population, bronchial thermoplasty resulted in a transient worsening of asthma symptoms, with a higher rate of hospitalizations during the treatment period. 11  Hospitalization rate equalized between the treatment and control groups in the posttreatment period, however, and the treatment group showed significant improvements in rescue medication use, prebronchodilator forced expiratory volume in the first second (FEV1) % predicted, and asthma control questionnaire scores. 11

The AIR-2  trial followed, which was a multicenter, randomized, double-blind, sham-controlled study of 288 patients with severe asthma. 6  Similar to the RISA trial, patients in the treatment arm of this trial experienced an increase in adverse respiratory effects during the treatment period, the most common being airway irritation (including wheezing, chest discomfort, cough, and chest pain) and upper respiratory tract infections. 6

The majority of adverse effects occurred within 1 day of the procedure and resolved within 7 days. 6  In this study, bronchial thermoplasty was found to significantly improve quality of life, as well as reduce the rate of severe exacerbations by 32%. 6  Patients who underwent the procedure also reported fewer adverse respiratory effects, fewer days lost from work, school, or other activities due to asthma, and an 84% risk reduction in emergency department visits. 6

Long-term (5-year) follow-up studies have been conducted for patients in both  the AIR  and  the AIR-2  trials. In patients who underwent bronchial thermoplasty in either study, the rate of adverse respiratory effects remained stable in years 2 to 5 following the procedure, with no increase in hospitalizations or emergency department visits. 7,12  Additionally, FEV1 remained stable throughout the 5-year follow-up period. 7,12  This finding was maintained in patients enrolled in the AIR-2 trial despite decreased use of daily ICS. 7

Bronchial thermoplasty is an important addition to the asthma treatment armamentarium. 7  This treatment is currently approved for individuals with severe persistent asthma who remain uncontrolled despite the use of an ICS and LABA. Several clinical trials with long-term follow-up have now demonstrated its safety and ability to improve quality of life in patients with severe asthma, such as Mr. T.

Severe asthma can be a challenge to manage. Patients with this condition require an extensive workup, but there are several treatments currently available to help manage these patients, and new treatments are continuing to emerge. Managing severe asthma thus requires knowledge of the options available as well as consideration of a patient's personal situation-both in terms of disease phenotype and individual preference. In this case, the patient expressed a strong desire to not add any additional medications to his asthma regimen, which explained the rationale for choosing to treat with bronchial thermoplasty. Personalized treatment necessitates exploring which of the available or emerging options is best for each individual patient.

Published: April 16, 2018

  • 1. National Asthma Education and Prevention Program: Asthma Care Quick Reference.
  • 2. Olin JT, Wechsler ME. Asthma: pathogenesis and novel drugs for treatment. BMJ . 2014;349:g5517.
  • 3. Boehringer Ingelheim. Asthma: U.S. FDA approves new indication for SPIRIVA Respimat [press release]. September 16, 2015.
  • 4. Peters SP, Kunselman SJ, Icitovic N, et al. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med . 2010;363:1715-1726.
  • 5. Kerstjens HA, Engel M, Dahl R. Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med . 2012;367:1198-1207.
  • 6. Castro M, Rubin AS, Laviolette M, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med . 2010;181:116-124.
  • 7. Wechsler ME, Laviolette M, Rubin AS, et al. Bronchial thermoplasty: long-term safety and effectiveness in patients with severe persistent asthma. J Allergy Clin Immunol . 2013;132:1295-1302.
  • 8. Global Initiative for Asthma: Pocket Guide for Asthma Management and Prevention (for Adults and Children Older than 5 Years).
  • 10. Cox G, Thomson NC, Rubin AS, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med . 2007;356:1327-1337.
  • 11. Pavord ID, Cox G, Thomson NC, et al. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med . 2007;176:1185-1191.
  • 12. Thomson NC, Rubin AS, Niven RM, et al. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med . 2011;11:8.

More On This Topic

Treatable traits and future exacerbation risk in severe asthma, baker’s asthma, the long-term trajectory of mild asthma, age, gender, & systemic corticosteroid comorbidities, ask the expert: william busse, md, challenges the current definition of the atopic march, considering the curveballs in asthma treatment, do mucus plugs play a bigger role in chronic severe asthma than previously thought, an emerging subtype of copd is associated with early respiratory disease.

image

  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Daily Do Lesson Plans
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers
  • NCCSTS Case Collection
  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Asthma Attack!

By Hollie L. Leavitt

Share Start a Discussion

Asthma Attack!

This interrupted case study follows the progress of a pediatric patient who experiences an acute asthma exacerbation brought on by an environmental trigger.  Students completing the case will synthesize their understanding of respiratory system anatomy and physiology with the clinical treatment of an obstructive lung disorder.  Topics reviewed include bronchoconstriction and dilation, pulmonary ventilation, air flow, gas exchange, respiratory volumes, the oxygen-hemoglobin dissociation curve, pCO2, pO2, and the effects of medications used to treat asthma.  Students should have an understanding of the respiratory system before starting the case and thus it is best used at the end of the respiratory system unit as a way for students to apply what they have learned to a real-world situation.  The case was developed for an anatomy and physiology class for majors taught through the “flipped” method at a community college, but would also work well for students in a pathophysiology course or in pre-professional programs in health care.  It may also be suitable for high school students in an advanced or honors anatomy and physiology program.

Download Case

   

Date Posted

  • Describe the anatomy of the respiratory passageways.
  • Understand respiratory system function including air flow and gas exchange.
  • Determine the effects of bronchoconstriction and bronchodilation on air flow.
  • Describe the pressure gradients required for pulmonary ventilation.
  • Understand respiratory volumes and how they are used clinically to assess disease.
  • Know how to use the oxygen-hemoglobin dissociation curve.
  • Predict how pCO2 and pO2 are affected by an obstructive lung disease.
  • Describe pathological changes in the airways and environmental factors that can lead to an acute asthma exacerbation.
  • Understand the effects of some of the medications used to treat asthma.

asthma; respiratory anatomy; respiratory physiology; respiratory system; lung pathology; respiratory volumes; oxygen-hemoglobin dissociation;

  

Subject Headings

EDUCATIONAL LEVEL

High school, Undergraduate lower division, Undergraduate upper division, Professional (degree program)

TOPICAL AREAS

TYPE/METHODS

Teaching Notes & Answer Key

Teaching notes.

Case teaching notes are protected and access to them is limited to paid subscribed instructors. To become a paid subscriber, purchase a subscription here .

Teaching notes are intended to help teachers select and adopt a case. They typically include a summary of the case, teaching objectives, information about the intended audience, details about how the case may be taught, and a list of references and resources.

Download Notes

Answer Keys are protected and access to them is limited to paid subscribed instructors. To become a paid subscriber, purchase a subscription here .

Download Answer Key

Materials & Media

Supplemental materials.

Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

The PowerPoint presentation below includes optional slides for in-class review before presenting the case.

  • asthma_attack_sup.ppt (~634 KB)
  • How Does Asthma Work? This animated video gives an overview of asthma, including why people get it, and how it can be deadly. Running time: 5:09 min. Produced by TED-Ed, 2017.

You may also like

Web Seminar

School and district leaders are invited to join us on Thursday, April 11, 2024, from 7:00 PM to 8:00 PM ET, to learn about NSTA’s School and Distric...

Struggling with materials management in your district? &nbsp;Want to learn tips and tricks from the experts at ECA Science Kit Services? Join us on Th...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Case study: 60-year-old female presenting with shortness of breath.

Deepa Rawat ; Sandeep Sharma .

Affiliations

Last Update: February 20, 2023 .

  • Case Presentation

The patient is a 60-year-old white female presenting to the emergency department with acute onset shortness of breath.  Symptoms began approximately 2 days before and had progressively worsened with no associated, aggravating, or relieving factors noted. She had similar symptoms approximately 1 year ago with an acute, chronic obstructive pulmonary disease (COPD) exacerbation requiring hospitalization. She uses BiPAP ventilatory support at night when sleeping and has requested to use this in the emergency department due to shortness of breath and wanting to sleep.

She denies fever, chills, cough, wheezing, sputum production, chest pain, palpitations, pressure, abdominal pain, abdominal distension, nausea, vomiting, and diarrhea.

She reports difficulty breathing at rest, forgetfulness, mild fatigue, feeling chilled, requiring blankets, increased urinary frequency, incontinence, and swelling in her bilateral lower extremities that are new-onset and worsening. Subsequently, she has not ambulated from bed for several days except to use the restroom due to feeling weak, fatigued, and short of breath.

There are no known ill contacts at home. Her family history includes significant heart disease and prostate malignancy in her father. Social history is positive for smoking tobacco use at 30 pack years. She quit smoking 2 years ago due to increasing shortness of breath. She denies all alcohol and illegal drug use. There are no known foods, drugs, or environmental allergies.

Past medical history is significant for coronary artery disease, myocardial infarction, COPD, hypertension, hyperlipidemia, hypothyroidism, diabetes mellitus, peripheral vascular disease, tobacco usage, and obesity.  Past surgical history is significant for an appendectomy, cardiac catheterization with stent placement, hysterectomy, and nephrectomy.

Her current medications include fluticasone-vilanterol 100-25 mcg inhaled daily, hydralazine 50 mg by mouth, 3 times per day, hydrochlorothiazide 25 mg by mouth daily, albuterol-ipratropium inhaled every 4 hours PRN, levothyroxine 175 mcg by mouth daily, metformin 500 mg by mouth twice per day, nebivolol 5 mg by mouth daily, aspirin 81 mg by mouth daily, vitamin D3 1000 units by mouth daily, clopidogrel 75 mg by mouth daily, isosorbide mononitrate 60 mg by mouth daily, and rosuvastatin 40 mg by mouth daily.

Physical Exam

Initial physical exam reveals temperature 97.3 F, heart rate 74 bpm, respiratory rate 24, BP 104/54, HT 160 cm, WT 100 kg, BMI 39.1, and O2 saturation 90% on room air.

Constitutional:  Extremely obese, acutely ill-appearing female. Well-developed and well-nourished with BiPAP in place. Lying on a hospital stretcher under 3 blankets.

HEENT: 

  • Head: Normocephalic and atraumatic
  • Mouth: Moist mucous membranes 
  • Macroglossia
  • Eyes: Conjunctiva and EOM are normal. Pupils are equal, round, and reactive to light. No scleral icterus. Bilateral periorbital edema present.
  • Neck: Neck supple. No JVD present. No masses or surgical scarring. 
  • Throat: Patent and moist

Cardiovascular:  Normal rate, regular rhythm, and normal heart sound with no murmur. 2+ pitting edema bilateral lower extremities and strong pulses in all four extremities.

Pulmonary/Chest:  No respiratory status distress at this time, tachypnea present, (+) wheezing noted, bilateral rhonchi, decreased air movement bilaterally. The patient was barely able to finish a full sentence due to shortness of breath.

Abdominal:  Soft. Obese. Bowel sounds are normal. No distension and no tenderness

Skin: Skin is very dry

Neurologic: Alert, awake, able to protect her airway. Moving all extremities. No sensation losses

  • Initial Evaluation

Initial evaluation to elucidate the source of dyspnea was performed and included CBC to establish if an infectious or anemic source was present, CMP to review electrolyte balance and review renal function, and arterial blood gas to determine the PO2 for hypoxia and any major acid-base derangement, creatinine kinase and troponin I to evaluate the presence of myocardial infarct or rhabdomyolysis, brain natriuretic peptide, ECG, and chest x-ray. Considering that it is winter and influenza is endemic in the community, a rapid influenza assay was obtained as well.

Largely unremarkable and non-contributory to establish a diagnosis.

Showed creatinine elevation above baseline from 1.08 base to 1.81, indicating possible acute injury. EGFR at 28 is consistent with chronic renal disease. Calcium was elevated to 10.2. However, when corrected for albumin, this corrected to 9.8 mg/dL. Mild transaminitis is present as seen in alkaline phosphatase, AST, and ALT measurements which could be due to liver congestion from volume overload.

Initial arterial blood gas with pH 7.491, PCO2 27.6, PO2 53.6, HCO3 20.6, and oxygen saturation 90% on room air, indicating respiratory alkalosis with hypoxic respiratory features.

Creatinine kinase was elevated along with serial elevated troponin I studies. In the setting of her known chronic renal failure and acute injury indicated by the above creatinine value, a differential of rhabdomyolysis is determined.

Influenza A and B: Negative

Normal sinus rhythm with non-specific ST changes in inferior leads. Decreased voltage in leads I, III, aVR, aVL, aVF.

Chest X-ray

Findings: Bibasilar airspace disease that may represent alveolar edema. Cardiomegaly noted. Prominent interstitial markings were noted. Small bilateral pleural effusions

Radiologist Impression: Radiographic changes of congestive failure with bilateral pleural effusions greater on the left compared to the right

  • Differential Diagnosis
  • Acute on chronic COPD exacerbation
  • Acute on chronic renal failure
  • Bacterial pneumonia
  • Congestive heart failure
  • Pericardial effusion
  • Hypothyroidism
  • Influenza pneumonia
  • Pulmonary edema
  • Pulmonary embolism
  • Confirmatory Evaluation

On the second day of the admission patient’s shortness of breath was not improved, and she was more confused with difficulty arousing on conversation and examination. To further elucidate the etiology of her shortness of breath and confusion, the patient's husband provided further history. He revealed that she is poorly compliant with taking her medications. He reports that she “doesn’t see the need to take so many pills.”

Testing was performed to include TSH, free T4, BNP, repeated arterial blood gas, CT scan of the chest, and echocardiogram. TSH and free T4 evaluate hypothyroidism. BNP evaluates fluid load status and possible congestive heart failure. CT scan of the chest will look for anatomical abnormalities. An echocardiogram is used to evaluate left ventricular ejection fraction, right ventricular function, pulmonary artery pressure, valvular function, pericardial effusion, and any hypokinetic area.

  • TSH: 112.717 (H)
  • Free T4: 0.56 (L)
  • TSH and Free T4 values indicate severe primary hypothyroidism. 

BNP can be falsely low in obese patients due to the increased surface area. Additionally, adipose tissue has BNP receptors which augment the true BNP value. Also, African American patients with more excretion may have falsely low values secondary to greater excretion of BNP. This test is not that helpful in renal failure due to the chronic nature of fluid overload. This allows for desensitization of the cardiac tissues with a subsequent decrease in BNP release.

Repeat arterial blood gas on BiPAP ventilation shows pH 7.397, PCO2 35.3, PO2 72.4, HCO3 21.2, and oxygen saturation 90% on 2 L supplemental oxygen.

CT chest without contrast was primarily obtained to evaluate the left hemithorax, especially the retrocardiac area.

Radiologist Impression: Tiny bilateral pleural effusions. Pericardial effusion. Coronary artery calcification. Some left lung base atelectasis with minimal airspace disease.

Echocardiogram

The left ventricular systolic function is normal. The left ventricular cavity is borderline dilated.

The pericardial fluid is collected primarily posteriorly, laterally but not apically. There appeared to be a subtle, early hemodynamic effect of the pericardial fluid on the right-sided chambers by way of an early diastolic collapse of the RA/RV and delayed RV expansion until late diastole. A dedicated tamponade study was not performed. 

The estimated ejection fraction appears to be in the range of 66% to 70%. The left ventricular cavity is borderline dilated.

The aortic valve is abnormal in structure and exhibits sclerosis.

The mitral valve is abnormal in structure. Mild mitral annular calcification is present. There is bilateral thickening present. Trace mitral valve regurgitation is present.

  • Myxedema coma or severe hypothyroidism
  • Pericardial effusion secondary to myxedema coma
  • COPD exacerbation
  • Acute on chronic hypoxic respiratory failure
  • Acute respiratory alkalosis
  • Bilateral community-acquired pneumonia
  • Small bilateral pleural effusions
  • Acute mild rhabdomyolysis
  • Acute chronic, stage IV, renal failure
  • Elevated troponin I levels, likely secondary to Renal failure 
  • Diabetes mellitus type 2, non-insulin-dependent
  • Extreme obesity
  • Hepatic dysfunction

The patient was extremely ill and rapidly decompensating with multisystem organ failure, including respiratory failure, altered mental status, acute on chronic renal failure, and cardiac dysfunction. The primary concerns for the stability of the patient revolved around respiratory failure coupled with altered mental status. In the intensive care unit (ICU), she rapidly began to fail BiPAP therapy. Subsequently, the patient was emergently intubated in the ICU.  A systemic review of therapies and hospital course is as follows:

Considering the primary diagnosis of myxedema coma, early supplementation with thyroid hormone is essential. Healthcare providers followed the American Thyroid Association recommendations, which recommend giving combined T3 and T4 supplementation; however, T4 alone may also be used. T3 therapy is given as a bolus of 5 to 20 micrograms intravenously and continued at 2.5 to 10 micrograms every 8 hours. An intravenous loading dose of 300 to 600 micrograms of T4 is followed by a daily intravenous dose of 50 to 100 micrograms. Repeated monitoring of TSH and T4 should be performed every 1 to 2 days to evaluate the effect and to titrate the dose of medication. The goal is to improve mental function. Until coexistent adrenal insufficiency is ruled out using a random serum cortisol measurement, 50 to 100 mg every 8 hours of hydrocortisone should be administered. In this case, clinicians used hydrocortisone 100 mg IV every 8 hours. Dexamethasone 2 to 4 mg every 12 hours is an alternative therapy.

The patient’s mental status rapidly worsened despite therapy. In the setting of her hypothyroidism history, this may be myxedema coma or due to the involvement of another organ system. The thyroid supplementation medications and hydrocortisone were continued. A CT head without contrast was normal.

Respiratory

For worsening metabolic acidosis and airway protection, the patient was emergently intubated. Her airway was deemed high risk due to having a large tongue, short neck, and extreme obesity. As the patient’s heart was preload dependent secondary to pericardial effusion, a 1-liter normal saline bolus was started. Norepinephrine was started at a low dose for vasopressor support, and ketamine with low dose Propofol was used for sedation. Ketamine is a sympathomimetic medication and usually does not cause hypotension as all other sedatives do. The patient was ventilated with AC mode of ventilation, tidal volume of 6 ml/kg ideal body weight, flow 70, initial fio2 100 %, rate 26 per minute (to compensate for metabolic acidosis), PEEP of 8.

Cardiovascular

She was determined to be hemodynamically stable with a pericardial effusion. This patient’s cardiac dysfunction was diastolic in nature, as suggested by an ejection fraction of 66% to 70%. The finding of posterior pericardial effusion further supported this conclusion. The posterior nature of this effusion was not amenable to pericardiocentesis. As such, this patient was preload dependent and showed signs of hypotension. The need for crystalloid fluid resuscitation was balanced against the impact increased intravascular volume would have on congestive heart failure and fluid overload status. Thyroid hormone replacement as above should improve hypotension. However, vasopressor agents may be used to maintain vital organ perfusion targeting a mean arterial pressure of greater than 65 mm Hg as needed. BP improved after fluid bolus, and eventually, the norepinephrine was stopped. Serial echocardiograms were obtained to ensure that the patient did not develop tamponade physiology. Total CK was elevated, which was likely due to Hypothyroidism compounded with chronic renal disease.

Infectious Disease

Blood cultures, urine analysis, and sputum cultures were obtained. The patient's white blood cell count was normal. This is likely secondary to her being immunocompromised due to hypothyroidism and diabetes. In part, the pulmonary findings of diffuse edema and bilateral pleural effusions can be explained by cardiac dysfunction. Thoracentesis of pleural fluid was attempted, and the fluid was analyzed for cytology and gram staining to rule out infectious or malignant causes as both a therapeutic and diagnostic measure. Until these results return, broad-spectrum antibiotics are indicated and may be discontinued once the infection is ruled out completely.

Gastrointestinal

Nasogastric tube feedings were started on the patient after intubation. She tolerated feedings well. AST and ALT were mildly elevated, which was thought to be due to hypothyroidism, and as the TSH and free T4 improved, her AST and ALT improved. Eventually, these values became normal once her TSH level was close to 50.

Her baseline creatinine was found to be close to 1.08 in prior medical records. She presented with a creatinine of 1.8 in the emergency department. Since hypothyroidism causes fluid retention in part because thyroid hormone encourages excretion of free water and partly due to decreased lymphatic function in returning fluid to vascular circulation.  Aggressive diuresis was attempted. As a result, her creatinine increased initially but improved on repeated evaluation, and the patient had a new baseline creatinine of 1.6. Overall she had a net change in the fluid status of 10 liters negative by her ten days of admission in the ICU.

Mildly anemic otherwise, WBC and platelet counts were normal. Electrolyte balance should be monitored closely, paying attention to sodium, potassium, chloride, and calcium specifically as these are worsened in both renal failure and myxedema. 

Daily sedation vacations were enacted, and the patient's mental status improved and was much better when TSH was around 20. The bilateral pleural effusions improved with aggressive diuresis. Breathing trials were initiated when the patient's fio2 requirements decreased to 60% and a PEEP of 8. She was eventually extubated onto BiPAP and then high-flow nasal cannula while off of BiPAP. Pericardial fluid remained stable, and no cardiac tamponade pathology developed. As a result, it was determined that a pericardial window was unnecessary. Furthermore, she was not a candidate for pericardiocentesis as the pericardial effusion was located posterior to the heart. Her renal failure improved with improved cardiac function, diuretics, and thyroid hormone replacement.

After extubation patient had speech and swallow evaluations and was able to resume an oral diet. The patient was eventually transferred out of the ICU to the general medical floor and eventually to a rehabilitation unit.

Despite the name myxedema coma, most patients will not present in a coma status. This illness is at its core a severe hypothyroidism crisis that leads to systemic multiorgan failure. Thyroid hormones T3, and to a lesser extent, T4 act directly on a cellular level to upregulate all metabolic processes in the body. Therefore, deficiency of this hormone is characterized by systemic decreased metabolism and decreased glucose utilization along with increased production and storage of osmotically active mucopolysaccharide protein complexes into peripheral tissues resulting in diffuse edema and swelling of tissue. [1]

Myxedema coma is an illness that occurs primarily in females at a rate of 4:1 compared to men. It typically impacts the elderly at the age of greater than 60 years old, and approximately 90% of cases occur during the winter months. Myxedema coma is the product of longstanding unidentified or undertreated hypothyroidism of any etiology. Thyroid hormone is necessary throughout the body and acts as a regulatory hormone that affects many organ systems. [2] In cardiac tissues, myxedema coma manifests as decreased contractility with subsequent reduction in stroke volume and overall cardiac output.  Bradycardia and hypotension are typically present also. Pericardial effusions occur due to the accumulation of mucopolysaccharides in the pericardial sac, which leads to worsened cardiac function and congestive heart failure from diastolic dysfunction. Capillary permeability is also increased throughout the body leading to worsened edema. Electrocardiogram findings may include bradycardia and low-voltage, non-specific ST waveform changes with possible inverted T waves.

Neurologic tissues are impacted in myxedema coma leading to the pathognomonic altered mental status resulting from hypoxia and decreased cerebral blood flow secondary to cardiac dysfunction as above. Additionally, hypothyroidism leads to decreased glucose uptake and utilization in neurological tissue, thus worsening cognitive function.

The pulmonary system typically manifests this disease process through hypoventilation secondary to the central nervous system (CNS) depression of the respiratory drive with blunting of the response to hypoxia and hypercapnia. Additionally, metabolic dysfunction in the muscles of respiration leads to respiratory fatigue and failure, macroglossia from mucopolysaccharide driven edema of the tongue leads to mechanical obstruction of the airway, and obesity hypoventilation syndrome with the decreased respiratory drive as most hypothyroid patients suffer from obesity.

Renal manifestations include decreased glomerular filtration rate from the reduced cardiac output and increased systemic vascular resistance coupled with acute rhabdomyolysis lead to acute kidney injury. In the case of our patient above who has a pre-existing renal disease status post-nephrectomy, this is further worsened.  The net effect is worsened fluid overload status compounding the cardiac dysfunction and edema. [3]

The gastrointestinal tract is marked by mucopolysaccharide-driven edema as well leading to malabsorption of nutrients, gastric ileus, and decreased peristalsis. Ascites is common because of increased capillary permeability in the intestines coupled with coexistent congestive heart failure and congestive hepatic failure. Coagulopathies are common to occur as a result of this hepatic dysfunction.

Evaluation: The diagnosis of myxedema coma, as with all other diseases, is heavily reliant on the history and physical exam. A past medical history including hypothyroidism is highly significant whenever decreased mental status or coma is identified. In the absence of identified hypothyroidism, myxedema coma is a diagnosis of exclusion when all other sources of coma have been ruled out. If myxedema coma is suspected, evaluation of thyroid-stimulating hormone (TSH), free thyroxine (T4), and serum cortisol is warranted. T4 will be extremely low. TSH is variable depending on the etiology of hypothyroidism, with a high TSH indicating primary hypothyroidism and a low or normal TSH indicating secondary etiologies. Cortisol may be low indicating adrenal insufficiency because of hypothyroidism.  [4]

Prognosis: Myxedema coma is a medical emergency. With proper and rapid diagnosis and initiation of therapy, the mortality rate is still as high as 25% to 50%. The most common cause of death is due to respiratory failure. The factors which suggest a poorer prognosis include increased age, persistent hypothermia, bradycardia, low score Glasgow Coma Scale, or multi-organ impairment indicated by high APACHE (Acute Physiology and Chronic Health Evaluation) II score. For these reasons, placement in an intensive care unit with a low threshold for intubation and mechanical ventilation can improve mortality outcomes. [3] [5]

  • Pearls of Wisdom
  • Not every case of shortness of breath is COPD or congestive heart failure (CHF). While less likely, a history of hypothyroidism should raise suspicion of myxedema coma in a patient with any cognitive changes.
  • Myxedema is the great imitator illness that impacts all organ systems. It can easily be mistaken for congestive heart failure, COPD exacerbation, pneumonia, renal injury or failure, or neurological insult.
  • Initial steps in therapy include aggressive airway management, thyroid hormone replacement, glucocorticoid therapy, and supportive measures.
  • These patients should be monitored in an intensive care environment with continuous telemetry. [6]
  • Enhancing Healthcare Team Outcomes

This case demonstrates how all interprofessional healthcare team members need to be involved in arriving at a correct diagnosis, particularly in more challenging cases such as this one. Clinicians, specialists, nurses, pharmacists, laboratory technicians all bear responsibility for carrying out the duties pertaining to their particular discipline and sharing any findings with all team members. An incorrect diagnosis will almost inevitably lead to incorrect treatment, so coordinated activity, open communication, and empowerment to voice concerns are all part of the dynamic that needs to drive such cases so patients will attain the best possible outcomes.

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Case Study of 60 year old female presenting with Shortness of Breath Contributed by Sandeep Sharma, MD

Disclosure: Deepa Rawat declares no relevant financial relationships with ineligible companies.

Disclosure: Sandeep Sharma declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Rawat D, Sharma S. Case Study: 60-Year-Old Female Presenting With Shortness of Breath. [Updated 2023 Feb 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PubMed Links to PubMed

Similar articles in PubMed

  • Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough. [StatPearls. 2024] Case Study: 33-Year-Old Female Presents with Chronic SOB and Cough. Sharma S, Hashmi MF, Rawat D. StatPearls. 2024 Jan
  • Acute Exacerbation of COPD. [J Educ Teach Emerg Med. 2023] Acute Exacerbation of COPD. Pappas D, Vempati A. J Educ Teach Emerg Med. 2023 Apr; 8(2):S35-S61. Epub 2023 Apr 30.
  • Review Breathlessness with pulmonary metastases: a multimodal approach. [J Adv Pract Oncol. 2013] Review Breathlessness with pulmonary metastases: a multimodal approach. Brant JM. J Adv Pract Oncol. 2013 Nov; 4(6):415-22.
  • Stress Cardiomyopathy in the Setting of COPD Exacerbation. [J Investig Med High Impact Cas...] Stress Cardiomyopathy in the Setting of COPD Exacerbation. Landefeld K, Saleh Q, Sander GE. J Investig Med High Impact Case Rep. 2015 Oct-Dec; 3(4):2324709615612847. Epub 2015 Oct 14.
  • Review Palliative Chemotherapy: Does It Only Provide False Hope? The Role of Palliative Care in a Young Patient With Newly Diagnosed Metastatic Adenocarcinoma. [J Adv Pract Oncol. 2017] Review Palliative Chemotherapy: Does It Only Provide False Hope? The Role of Palliative Care in a Young Patient With Newly Diagnosed Metastatic Adenocarcinoma. Doverspike L, Kurtz S, Selvaggi K. J Adv Pract Oncol. 2017 May-Jun; 8(4):382-386. Epub 2017 May 1.

Recent Activity

  • Case Study: 60-Year-Old Female Presenting With Shortness of Breath - StatPearls Case Study: 60-Year-Old Female Presenting With Shortness of Breath - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Open access
  • Published: 16 October 2014

A woman with asthma: a whole systems approach to supporting self-management

  • Hilary Pinnock 1 ,
  • Elisabeth Ehrlich 1 ,
  • Gaylor Hoskins 2 &
  • Ron Tomlins 3  

npj Primary Care Respiratory Medicine volume  24 , Article number:  14063 ( 2014 ) Cite this article

16k Accesses

2 Citations

6 Altmetric

Metrics details

  • Health care

A 35-year-old lady attends for review of her asthma following an acute exacerbation. There is an extensive evidence base for supported self-management for people living with asthma, and international and national guidelines emphasise the importance of providing a written asthma action plan. Effective implementation of this recommendation for the lady in this case study is considered from the perspective of a patient, healthcare professional, and the organisation. The patient emphasises the importance of developing a partnership based on honesty and trust, the need for adherence to monitoring and regular treatment, and involvement of family support. The professional considers the provision of asthma self-management in the context of a structured review, with a focus on a self-management discussion which elicits the patient’s goals and preferences. The organisation has a crucial role in promoting, enabling and providing resources to support professionals to provide self-management. The patient’s asthma control was assessed and management optimised in two structured reviews. Her goal was to avoid disruption to her work and her personalised action plan focused on achieving that goal.

Similar content being viewed by others

asthma attack case study exam 2

Barriers to implementing asthma self-management in Malaysian primary care: qualitative study exploring the perspectives of healthcare professionals

Ping Yein Lee, Ai Theng Cheong, … Ee Ming Khoo

asthma attack case study exam 2

The self-management abilities test (SMAT): a tool to identify the self-management abilities of adults with bronchiectasis

Katelyn R. Smalley, Lisa Aufegger, … Ara Darzi

asthma attack case study exam 2

Improving primary care management of asthma: do we know what really works?

Monica J. Fletcher, Ioanna Tsiligianni, … Thys van der Molen

A 35-year-old sales representative attends the practice for an asthma review. Her medical record notes that she has had asthma since childhood, and although for many months of the year her asthma is well controlled (when she often reduces or stops her inhaled steroids), she experiences one or two exacerbations a year requiring oral steroids. These are usually triggered by a viral upper respiratory infection, though last summer when the pollen count was particularly high she became tight chested and wheezy for a couple of weeks.

Her regular prescription is for fluticasone 100 mcg twice a day, and salbutamol as required. She has a young family and a busy lifestyle so does not often manage to find time to attend the asthma clinic. A few weeks previously, an asthma attack had interfered with some important work-related travel, and she has attended the clinic on this occasion to ask about how this can be managed better in the future. There is no record of her having been given an asthma action plan.

What do we know about asthma self-management? The academic perspective

Supported self-management reduces asthma morbidity.

The lady in this case study is struggling to maintain control of her asthma within the context of her busy professional and domestic life. The recent unfortunate experience which triggered this consultation offers a rare opportunity to engage with her and discuss how she can manage her asthma better. It behoves the clinician whom she is seeing (regardless of whether this is in a dedicated asthma clinic or an appointment in a routine general practice surgery) to grasp the opportunity and discuss self-management and provide her with a (written) personalised asthma action plan (PAAP).

The healthcare professional advising the lady is likely to be aware that international and national guidelines emphasise the importance of supporting self-management. 1 – 4 There is an extensive evidence base for asthma self-management: a recent synthesis identified 22 systematic reviews summarising data from 260 randomised controlled trials encompassing a broad range of demographic, clinical and healthcare contexts, which concluded that asthma self-management reduces emergency use of healthcare resources, including emergency department visits, hospital admissions and unscheduled consultations and improves markers of asthma control, including reduced symptoms and days off work, and improves quality of life. 1 , 2 , 5 – 12 Health economic analysis suggests that it is not only clinically effective, but also a cost-effective intervention. 13

Personalised asthma action plans

Key features of effective self-management approaches are:

Self-management education should be reinforced by provision of a (written) PAAP which reminds patients of their regular treatment, how to monitor and recognise that control is deteriorating and the action they should take. 14 – 16 As an adult, our patient can choose whether she wishes to monitor her control with symptoms or by recording peak flows (or a combination of both). 6 , 8 , 9 , 14 Symptom-based monitoring is generally better in children. 15 , 16

Plans should have between two and three action points including emergency doses of reliever medication; increasing low dose (or recommencing) inhaled steroids; or starting a course of oral steroids according to severity of the exacerbation. 14

Personalisation of the action plan is crucial. Focussing specifically on what actions she could take to prevent a repetition of the recent attack is likely to engage her interest. Not all patients will wish to start oral steroids without advice from a healthcare professional, though with her busy lifestyle and travel our patient is likely to be keen to have an emergency supply of prednisolone. Mobile technology has the potential to support self-management, 17 , 18 though a recent systematic review concluded that none of the currently available smart phone ‘apps’ were fit for purpose. 19

Identification and avoidance of her triggers is important. As pollen seems to be a trigger, management of allergic rhinitis needs to be discussed (and included in her action plan): she may benefit from regular use of a nasal steroid spray during the season. 20

Self-management as recommended by guidelines, 1 , 2 focuses narrowly on adherence to medication/monitoring and the early recognition/remediation of exacerbations, summarised in (written) PAAPs. Patients, however, may want to discuss how to reduce the impact of asthma on their life more generally, 21 including non-pharmacological approaches.

Supported self-management

The impact is greater if self-management education is delivered within a comprehensive programme of accessible, proactive asthma care, 22 and needs to be supported by ongoing regular review. 6 With her busy lifestyle, our patient may be reluctant to attend follow-up appointments, and once her asthma is controlled it may be possible to make convenient arrangements for professional review perhaps by telephone, 23 , 24 or e-mail. Flexible access to professional advice (e.g., utilising diverse modes of consultation) is an important component of supporting self-management. 25

The challenge of implementation

Implementation of self-management, however, remains poor in routine clinical practice. A recent Asthma UK web-survey estimated that only 24% of people with asthma in the UK currently have a PAAP, 26 with similar figures from Sweden 27 and Australia. 28 The general practitioner may feel that they do not have time to discuss self-management in a routine surgery appointment, or may not have a supply of paper-based PAAPs readily available. 29 However, as our patient rarely finds time to attend the practice, inviting her to make an appointment for a future clinic is likely to be unsuccessful and the opportunity to provide the help she needs will be missed.

The solution will need a whole systems approach

A systematic meta-review of implementing supported self-management in long-term conditions (including asthma) concluded that effective implementation was multifaceted and multidisciplinary; engaging patients, training and motivating professionals within the context of an organisation which actively supported self-management. 5 This whole systems approach considers that although patient education, professional training and organisational support are all essential components of successful support, they are rarely effective in isolation. 30 A systematic review of interventions that promote provision/use of PAAPs highlighted the importance of organisational systems (e.g., sending blank PAAPs with recall reminders). 31 A patient offers her perspective ( Box 1 ), a healthcare professional considers the clinical challenge, and the challenges are discussed from an organisational perspective.

Box 1: What self-management help should this lady expect from her general practitioner or asthma nurse? The patient’s perspective

The first priority is that the patient is reassured that her condition can be managed successfully both in the short and the long term. A good working relationship with the health professional is essential to achieve this outcome. Developing trust between patient and healthcare professional is more likely to lead to the patient following the PAAP on a long-term basis.

A review of all medication and possible alternative treatments should be discussed. The patient needs to understand why any changes are being made and when she can expect to see improvements in her condition. Be honest, as sometimes it will be necessary to adjust dosages before benefits are experienced. Be positive. ‘There are a number of things we can do to try to reduce the impact of asthma on your daily life’. ‘Preventer treatment can protect against the effect of pollen in the hay fever season’. If possible, the same healthcare professional should see the patient at all follow-up appointments as this builds trust and a feeling of working together to achieve the aim of better self-management.

Is the healthcare professional sure that the patient knows how to take her medication and that it is taken at the same time each day? The patient needs to understand the benefit of such a routine. Medication taken regularly at the same time each day is part of any self-management regime. If the patient is unused to taking medication at the same time each day then keeping a record on paper or with an electronic device could help. Possibly the patient could be encouraged to set up a system of reminders by text or smartphone.

Some people find having a peak flow meter useful. Knowing one's usual reading means that any fall can act as an early warning to put the PAAP into action. Patients need to be proactive here and take responsibility.

Ongoing support is essential for this patient to ensure that she takes her medication appropriately. Someone needs to be available to answer questions and provide encouragement. This could be a doctor or a nurse or a pharmacist. Again, this is an example of the partnership needed to achieve good asthma control.

It would also be useful at a future appointment to discuss the patient’s lifestyle and work with her to reduce her stress. Feeling better would allow her to take simple steps such as taking exercise. It would also be helpful if all members of her family understood how to help her. Even young children can do this.

From personal experience some people know how beneficial it is to feel they are in a partnership with their local practice and pharmacy. Being proactive produces dividends in asthma control.

What are the clinical challenges for the healthcare professional in providing self-management support?

Due to the variable nature of asthma, a long-standing history may mean that the frequency and severity of symptoms, as well as what triggers them, may have changed over time. 32 Exacerbations requiring oral steroids, interrupting periods of ‘stability’, indicate the need for re-assessment of the patient’s clinical as well as educational needs. The patient’s perception of stability may be at odds with the clinical definition 1 , 33 —a check on the number of short-acting bronchodilator inhalers the patient has used over a specific period of time is a good indication of control. 34 Assessment of asthma control should be carried out using objective tools such as the Asthma Control Test or the Royal College of Physicians three questions. 35 , 36 However, it is important to remember that these assessment tools are not an end in themselves but should be a springboard for further discussion on the nature and pattern of symptoms. Balancing work with family can often make it difficult to find the time to attend a review of asthma particularly when the patient feels well. The practice should consider utilising other means of communication to maintain contact with patients, encouraging them to come in when a problem is highlighted. 37 , 38 Asthma guidelines advocate a structured approach to ensure the patient is reviewed regularly and recommend a detailed assessment to enable development of an appropriate patient-centred (self)management strategy. 1 – 4

Although self-management plans have been shown to be successful for reducing the impact of asthma, 21 , 39 the complexity of managing such a fluctuating disease on a day-to-day basis is challenging. During an asthma review, there is an opportunity to work with the patient to try to identify what triggers their symptoms and any actions that may help improve or maintain control. 38 An integral part of personalised self-management education is the written PAAP, which gives the patient the knowledge to respond to the changes in symptoms and ensures they maintain control of their asthma within predetermined parameters. 9 , 40 The PAAP should include details on how to monitor asthma, recognise symptoms, how to alter medication and what to do if the symptoms do not improve. The plan should include details on the treatment to be taken when asthma is well controlled, and how to adjust it when the symptoms are mild, moderate or severe. These action plans need to be developed between the doctor, nurse or asthma educator and the patient during the review and should be frequently reviewed and updated in partnership (see Box 1). Patient preference as well as clinical features such as whether she under- or over-perceives her symptoms should be taken into account when deciding whether the action plan is peak flow or symptom-driven. Our patient has a lot to gain from having an action plan. She has poorly controlled asthma and her lifestyle means that she will probably see different doctors (depending who is available) when she needs help. Being empowered to self-manage could make a big difference to her asthma control and the impact it has on her life.

The practice should have protocols in place, underpinned by specific training to support asthma self-management. As well as ensuring that healthcare professionals have appropriate skills, this should include training for reception staff so that they know what action to take if a patient telephones to say they are having an asthma attack.

However, focusing solely on symptom management strategies (actions) to follow in the presence of deteriorating symptoms fails to incorporate the patients’ wider views of asthma, its management within the context of her/his life, and their personal asthma management strategies. 41 This may result in a failure to use plans to maximise their health potential. 21 , 42 A self-management strategy leading to improved outcomes requires a high level of patient self-efficacy, 43 a meaningful partnership between the patient and the supporting health professional, 42 , 44 and a focused self-management discussion. 14

Central to both the effectiveness and personalisation of action plans, 43 , 45 in particular the likelihood that the plan will lead to changes in patients’ day-to-day self-management behaviours, 45 is the identification of goals. Goals are more likely to be achieved when they are specific, important to patients, collaboratively set and there is a belief that these can be achieved. Success depends on motivation 44 , 46 to engage in a specific behaviour to achieve a valued outcome (goal) and the ability to translate the behavioural intention into action. 47 Action and coping planning increases the likelihood that patient behaviour will actually change. 44 , 46 , 47 Our patient has a goal: she wants to avoid having her work disrupted by her asthma. Her personalised action plan needs to explicitly focus on achieving that goal.

As providers of self-management support, health professionals must work with patients to identify goals (valued outcomes) that are important to patients, that may be achievable and with which they can engage. The identification of specific, personalised goals and associated feasible behaviours is a prerequisite for the creation of asthma self-management plans. Divergent perceptions of asthma and how to manage it, and a mismatch between what patients want/need from these plans and what is provided by professionals are barriers to success. 41 , 42

What are the challenges for the healthcare organisation in providing self-management support?

A number of studies have demonstrated the challenges for primary care physicians in providing ongoing support for people with asthma. 31 , 48 , 49 In some countries, nurses and other allied health professionals have been trained as asthma educators and monitor people with stable asthma. These resources are not always available. In addition, some primary care services are delivered in constrained systems where only a few minutes are available to the practitioner in a consultation, or where only a limited range of asthma medicines are available or affordable. 50

There is recognition that the delivery of quality care depends on the competence of the doctor (and supporting health professionals), the relationship between the care providers and care recipients, and the quality of the environment in which care is delivered. 51 This includes societal expectations, health literacy and financial drivers.

In 2001, the Australian Government adopted a programme developed by the General Practitioner Asthma Group of the National Asthma Council Australia that provided a structured approach to the implementation of asthma management guidelines in a primary care setting. 52 Patients with moderate-to-severe asthma were eligible to participate. The 3+ visit plan required confirmation of asthma diagnosis, spirometry if appropriate, assessment of trigger factors, consideration of medication and patient self-management education including provision of a written PAAP. These elements, including regular medical review, were delivered over three visits. Evaluation demonstrated that the programme was beneficial but that it was difficult to complete the third visit in the programme. 53 – 55 Accordingly, the programme, renamed the Asthma Cycle of Care, was modified to incorporate two visits. 56 Financial incentives are provided to practices for each patient who receives this service each year.

Concurrently, other programmes were implemented which support practice-based care. Since 2002, the National Asthma Council has provided best-practice asthma and respiratory management education to health professionals, 57 and this programme will be continuing to 2017. The general practitioner and allied health professional trainers travel the country to provide asthma and COPD updates to groups of doctors, nurses and community pharmacists. A number of online modules are also provided. The PACE (Physician Asthma Care Education) programme developed by Noreen Clark has also been adapted to the Australian healthcare system. 58 In addition, a pharmacy-based intervention has been trialled and implemented. 59

To support these programmes, the National Asthma Council ( www.nationalasthma.org.au ) has developed resources for use in practices. A strong emphasis has been on the availability of a range of PAAPs (including plans for using adjustable maintenance dosing with ICS/LABA combination inhalers), plans for indigenous Australians, paediatric plans and plans translated into nine languages. PAAPs embedded in practice computer systems are readily available in consultations, and there are easily accessible online paediatric PAAPs ( http://digitalmedia.sahealth.sa.gov.au/public/asthma/ ). A software package, developed in the UK, can be downloaded and used to generate a pictorial PAAP within the consultation. 60

One of the strongest drivers towards the provision of written asthma action plans in Australia has been the Asthma Friendly Schools programme. 61 , 62 Established with Australian Government funding and the co-operation of Education Departments of each state, the Asthma Friendly Schools programme engages schools to address and satisfy a set of criteria that establishes an asthma-friendly environment. As part of accreditation, the school requires that each child with asthma should have a written PAAP prepared by their doctor to assist (trained) staff in managing a child with asthma at school.

The case study continues...

The initial presentation some weeks ago was during an exacerbation of asthma, which may not be the best time to educate a patient. It is, however, a splendid time to build on their motivation to feel better. She agreed to return after her asthma had settled to look more closely at her asthma control, and an appointment was made for a routine review.

At this follow-up consultation, the patient’s diagnosis was reviewed and confirmed and her trigger factors discussed. For this lady, respiratory tract infections are the usual trigger but allergic factors during times of high pollen count may also be relevant. Assessment of her nasal airway suggested that she would benefit from better control of allergic rhinitis. Other factors were discussed, as many patients are unaware that changes in air temperature, exercise and pets can also trigger asthma exacerbations. In addition, use of the Asthma Control Test was useful as an objective assessment of control as well as helping her realise what her life could be like! Many people with long-term asthma live their life within the constraints of their illness, accepting that is all that they can do.

After assessing the level of asthma control, a discussion about management options—trigger avoidance, exercise and medicines—led to the development of a written PAAP. Asthma can affect the whole family, and ways were explored that could help her family understand why it is important that she finds time in the busy domestic schedules to take her regular medication. Family and friends can also help by understanding what triggers her asthma so that they can avoid exposing her to perfumes, pollens or pets that risk triggering her symptoms. Information from the national patient organisation was provided to reinforce the messages.

The patient agreed to return in a couple of weeks, and a recall reminder was set up. At the second consultation, the level of control since the last visit will be explored including repeat spirometry, if appropriate. Further education about the pathophysiology of asthma and how to recognise early warning signs of loss of control can be given. Device use will be reassessed and the PAAP reviewed. Our patient’s goal is to avoid disruption to her work and her PAAP will focus on achieving that goal. Finally, agreement will be reached with the patient about future routine reviews, which, now that she has a written PAAP, could be scheduled by telephone if all is well, or face-to-face if a change in her clinical condition necessitates a more comprehensive review.

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2012. Available from: http://www.ginasthma.org (accessed July 2013).

British Thoracic Society/Scottish Intercollegiate Guideline Network British Guideline on the Management of Asthma. Thorax 2008; 63 (Suppl 4 iv1–121, updated version available from: http://www.sign.ac.uk (accessed January 2014).

Article   Google Scholar  

National Asthma Council Australia. Australian Asthma Handbook. Available from: http://www.nationalasthma.org.au/handbook (accessed May 2014).

National Asthma Education and Prevention Program (NAEPP) Coordinating Committee. Expert Panel Report 3 (EPR3): Guidelines for the Diagnosis and Management of Asthma. Available from: https://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm (accessed May 2014).

Taylor SJC, Pinnock H, Epiphaniou E, Pearce G, Parke H . A rapid synthesis of the evidence on interventions supporting self-management for people with long-term conditions. (PRISMS Practical Systematic Review of Self-Management Support for long-term conditions). Health Serv Deliv Res (in press).

Gibson PG, Powell H, Wilson A, Abramson MJ, Haywood P, Bauman A et al. Self-management education and regular practitioner review for adults with asthma. Cochrane Database Syst Rev 2002: (Issue 3) Art No. CD001117.

Tapp S, Lasserson TJ, Rowe BH . Education interventions for adults who attend the emergency room for acute asthma. Cochrane Database Syst Rev 2007: (Issue 3) Art No. CD003000.

Powell H, Gibson PG . Options for self-management education for adults with asthma. Cochrane Database Syst Rev 2002: (Issue 3) Art No: CD004107.

Toelle B, Ram FSF . Written individualised management plans for asthma in children and adults. Cochrane Database Syst Rev 2004: (Issue 1) Art No. CD002171.

Lefevre F, Piper M, Weiss K, Mark D, Clark N, Aronson N . Do written action plans improve patient outcomes in asthma? An evidence-based analysis. J Fam Pract 2002; 51 : 842–848.

PubMed   Google Scholar  

Boyd M, Lasserson TJ, McKean MC, Gibson PG, Ducharme FM, Haby M . Interventions for educating children who are at risk of asthma-related emergency department attendance. Cochrane Database Syst Rev 2009: (Issue 2) Art No.CD001290.

Bravata DM, Gienger AL, Holty JE, Sundaram V, Khazeni N, Wise PH et al. Quality improvement strategies for children with asthma: a systematic review. Arch Pediatr Adolesc Med 2009; 163 : 572–581.

Bower P, Murray E, Kennedy A, Newman S, Richardson G, Rogers A . Self-management support interventions to reduce health care utilisation without compromising outcomes: a rapid synthesis of the evidence. Available from: http://www.nets.nihr.ac.uk/projects/hsdr/11101406 (accessed April 2014).

Gibson PG, Powell H . Written action plans for asthma: an evidence-based review of the key components. Thorax 2004; 59 : 94–99.

Article   CAS   Google Scholar  

Bhogal SK, Zemek RL, Ducharme F . Written action plans for asthma in children. Cochrane Database Syst Rev 2006: (Issue 3) Art No. CD005306.

Zemek RL, Bhogal SK, Ducharme FM . Systematic review of randomized controlled trials examining written action plans in children: what is the plan?. Arch Pediatr Adolesc Med 2008; 162 : 157–163.

Pinnock H, Slack R, Pagliari C, Price D, Sheikh A . Understanding the potential role of mobile phone based monitoring on asthma self-management: qualitative study. Clin Exp Allergy 2007; 37 : 794–802.

de Jongh T, Gurol-Urganci I, Vodopivec-Jamsek V, Car J, Atun R . Mobile phone messaging for facilitating self-management of long-term illnesses. Cochrane Database Syst Rev 2012: (Issue 12) Art No. CD007459.

Huckvale K, Car M, Morrison C, Car J . Apps for asthma self-management: a systematic assessment of content and tools. BMC Med 2012; 10 : 144.

Allergic Rhinitis and its Impact on Asthma. Management of Allergic Rhinitis and its Impact on Asthma: Pocket Guide. ARIA 2008. Available from: http://www.whiar.org (accessed May 2014).

Ring N, Jepson R, Hoskins G, Wilson C, Pinnock H, Sheikh A et al. Understanding what helps or hinders asthma action plan use: a systematic review and synthesis of the qualitative literature. Patient Educ Couns 2011; 85 : e131–e143.

Moullec G, Gour-Provencal G, Bacon SL, Campbell TS, Lavoie KL . Efficacy of interventions to improve adherence to inhaled corticosteroids in adult asthmatics: Impact of using components of the chronic care model. Respir Med 2012; 106 : 1211–1225.

Pinnock H, Bawden R, Proctor S, Wolfe S, Scullion J, Price D et al. Accessibility, acceptability and effectiveness of telephone reviews for asthma in primary care: randomised controlled trial. BMJ 2003; 326 : 477–479.

Pinnock H, Adlem L, Gaskin S, Harris J, Snellgrove C, Sheikh A . Accessibility, clinical effectiveness and practice costs of providing a telephone option for routine asthma reviews: phase IV controlled implementation study. Br J Gen Pract 2007; 57 : 714–722.

PubMed   PubMed Central   Google Scholar  

Kielmann T, Huby G, Powell A, Sheikh A, Price D, Williams S et al. From support to boundary: a qualitative study of the border between self care and professional care. Patient Educ Couns 2010; 79 : 55–61.

Asthma UK . Compare your care report. Asthma UK, 2013. Available from: http://www.asthma.org.uk (accessed January 2014).

Stallberg B, Lisspers K, Hasselgren M, Janson C, Johansson G, Svardsudd K . Asthma control in primary care in Sweden: a comparison between 2001 and 2005. Prim Care Respir J 2009; 18 : 279–286.

Reddel H, Peters M, Everett P, Flood P, Sawyer S . Ownership of written asthma action plans in a large Australian survey. Eur Respir J 2013; 42 . Abstract 2011.

Wiener-Ogilvie S, Pinnock H, Huby G, Sheikh A, Partridge MR, Gillies J . Do practices comply with key recommendations of the British Asthma Guideline? If not, why not? Prim Care Respir J 2007; 16 : 369–377.

Kennedy A, Rogers A, Bower P . Support for self care for patients with chronic disease. BMJ 2007; 335 : 968–970.

Ring N, Malcolm C, Wyke S, Macgillivray S, Dixon D, Hoskins G et al. Promoting the Use of Personal Asthma Action Plans: A Systematic Review. Prim Care Respir J 2007; 16 : 271–283.

Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, Casale TB et al. A new perspective on concepts of asthma severity and control. Eur Respir J 2008; 32 : 545–554.

Horne R . Compliance, adherence, and concordance: implications for asthma treatment. Chest 2006; 130 (suppl): 65S–72S.

Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 2009; 180 : 59–99.

Thomas M, Kay S, Pike J, Rosenzweig JR, Hillyer EV, Price D . The Asthma Control Test (ACT) as a predictor of GINA guideline-defined asthma control: analysis of a multinational cross-sectional survey. Prim Care Respir J 2009; 18 : 41–49.

Hoskins G, Williams B, Jackson C, Norman P, Donnan P . Assessing asthma control in UK primary care: use of routinely collected prospective observational consultation data to determine appropriateness of a variety of control assessment models. BMC Fam Pract 2011; 12 : 105.

Pinnock H, Fletcher M, Holmes S, Keeley D, Leyshon J, Price D et al. Setting the standard for routine asthma consultations: a discussion of the aims, process and outcomes of reviewing people with asthma in primary care. Prim Care Respir J 2010; 19 : 75–83.

McKinstry B, Hammersley V, Burton C, Pinnock H, Elton RA, Dowell J et al. The quality, safety and content of telephone and face-to-face consultations: a comparative study. Qual Saf Health Care 2010; 19 : 298–303.

Gordon C, Galloway T . Review of Findings on Chronic Disease Self-Management Program (CDSMP) Outcomes: Physical, Emotional & Health-Related Quality of Life, Healthcare Utilization and Costs . Centers for Disease Control and Prevention and National Council on Aging: Atlanta, GA, USA, 2008.

Beasley R, Crane J . Reducing asthma mortality with the self-management plan system of care. Am J Respir Crit Care Med 2001; 163 : 3–4.

Ring N, Jepson R, Pinnock H, Wilson C, Hoskins G, Sheikh A et al. Encouraging the promotion and use of asthma action plans: a cross study synthesis of qualitative and quantitative evidence. Trials 2012; 13 : 21.

Jones A, Pill R, Adams S . Qualitative study of views of health professionals and patients on guided self-management plans for asthma. BMJ 2000; 321 : 1507–1510.

Bandura A . Self-efficacy: toward a unifying theory of behavioural change. Psychol Rev 1977; 84 : 191–215.

Gollwitzer PM, Sheeran P . Implementation intentions and goal achievement: a meta-analysis of effects and processes. Adv Exp Soc Psychol 2006; 38 : 69–119.

Google Scholar  

Hardeman W, Johnston M, Johnston DW, Bonetti D, Wareham NJ, Kinmonth AL . Application of the theory of planned behaviour change interventions: a systematic review. Psychol Health 2002; 17 : 123–158.

Schwarzer R . Modeling health behavior change: how to predict and modify the adoption and maintenance of health behaviors. Appl Psychol 2008; 57 : 1–29.

Sniehotta F . Towards a theory of intentional behaviour change: plans, planning, and self-regulation. Br J Health Psychol 2009; 14 : 261–273.

Okelo SO, Butz AM, Sharma R, Diette GB, Pitts SI, King TM et al. Interventions to modify health care provider adherence to asthma guidelines: a systematic review. Pediatrics 2013; 132 : 517–534.

Grol R, Grimshaw RJ . From best evidence to best practice: effective implementation of change in patients care. Lancet 2003; 362 : 1225–1230.

Jusef L, Hsieh C-T, Abad L, Chaiyote W, Chin WS, Choi Y-J et al. Primary care challenges in treating paediatric asthma in the Asia-Pacific region. Prim Care Respir J 2013; 22 : 360–362.

Donabedian A . Evaluating the quality of medical care. Milbank Q 2005; 83 : 691–729.

Fardy HJ . Moving towards organized care of chronic disease. The 3+ visit plan. Aust Fam Physician 2001; 30 : 121–125.

CAS   PubMed   Google Scholar  

Glasgow NJ, Ponsonby AL, Yates R, Beilby J, Dugdale P . Proactive asthma care in childhood: general practice based randomised controlled trial. BMJ 2003; 327 : 659.

Douglass JA, Goemann DP, Abramson MJ . Asthma 3+ visit plan: a qualitative evaluation. Intern Med J 2005; 35 : 457–462.

Beilby J, Holton C . Chronic disease management in Australia; evidence and policy mismatch, with asthma as an example. Chronic Illn 2005; 1 : 73–80.

The Department of Health. Asthma Cycle of Care. Accessed on 14 May 2014 at http://www.health.gov.au/internet/main/publishing.nsf/Content/asthma-cycle .

National Asthma Council Australia. Asthma and Respiratory Education Program. Accessed on 14 May 2014 at http://www.nationalasthma.org.au/health-professionals/education-training/asthma-respiratory-education-program .

Patel MR, Shah S, Cabana MD, Sawyer SM, Toelle B, Mellis C et al. Translation of an evidence-based asthma intervention: Physician Asthma Care Education (PACE) in the United States and Australia. Prim Care Respir J 2013; 22 : 29–34.

Armour C, Bosnic-Anticevich S, Brilliant M, Burton D, Emmerton L, Krass I et al. Pharmacy Asthma Care Program (PACP) improves outcomes for patients in the community. Thorax 2007; 62 : 496–502.

Roberts NJ, Mohamed Z, Wong PS, Johnson M, Loh LC, Partridge MR . The development and comprehensibility of a pictorial asthma action plan. Patient Educ Couns 2009; 74 : 12–18.

Henry RL, Gibson PG, Vimpani GV, Francis JL, Hazell J . Randomised controlled trial of a teacher-led asthma education program. Pediatr Pulmonol 2004; 38 : 434–442.

National Asthma Council Australia. Asthma Friendly Schools program. Accessed on 14 May 2014 at http://www.asthmaaustralia.org.au/Asthma-Friendly-Schools.aspx .

Download references

Author information

Authors and affiliations.

Asthma UK Centre for Applied Research, Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK,

Hilary Pinnock & Elisabeth Ehrlich

NMAHP-RU, University of Stirling, Stirling, UK,

Gaylor Hoskins

Discipline of General Practice, University of Sydney, Sydney, NSW, Australia

Ron Tomlins

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hilary Pinnock .

Ethics declarations

Competing interests.

The authors declare no conflict of interest.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Reprints and permissions

About this article

Cite this article.

Pinnock, H., Ehrlich, E., Hoskins, G. et al. A woman with asthma: a whole systems approach to supporting self-management. npj Prim Care Resp Med 24 , 14063 (2014). https://doi.org/10.1038/npjpcrm.2014.63

Download citation

Received : 23 June 2014

Revised : 15 July 2014

Accepted : 15 July 2014

Published : 16 October 2014

DOI : https://doi.org/10.1038/npjpcrm.2014.63

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

asthma attack case study exam 2

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 1, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

Case report from Austria shows mpox breakthrough infection in man who had received both vaccine doses

by European Society of Clinical Microbiology and Infectious Diseases

mpox

New research to be presented at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID 2024) in Barcelona, Spain (27–30 April) details the case of a man who had received two doses of the mpox vaccine in Autumn, 2022 yet experienced a 'breakthrough' mpox infection in January 2024.

The authors believe breakthrough should be considered in fully vaccinated individuals engaging in high-risk behaviors. They also call for further research on the need for booster doses to protect against these breakthrough infections . The case report is by Dr. Luigi Segagni-Lusignani, Public Health Authority, Vienna, Austria and colleagues. They add a second case, reported in March 2024 is currently under investigation.

Following the sharp decline in notifications of new mpox infections after introducing the EMA-approved modified Vaccinia Ankara–Bavarian Nordic (MVA-BN) administration in late 2022 and early 2023, an upsurge in mpox cases occurred in the latter half of 2023 in European countries. Clusters were observed in individuals presumed immune through recent vaccination, but data on the durability of protective immunity after complete two-dose vaccination are limited.

The authors present a case of mpox infection in a 35-year-old, who had completed the two-dose course of intradermal third-generation Jynneos vaccine as pre-Exposure Prophylaxis (PrEP) on November 8, 2022, with a 28-day interval between the first and second dose. His medical history included well-controlled HIV infection since 2011 (CD4 count of > 700 cells/µL), hepatitis C infection in April 2017, SARS-CoV-2 infection in November 2020, and Campylobacter infections in August 2021 and January 2022.

In January 2024, five days after multiple sexual encounters during a Vienna event, the patient reported fever, chills, headache, discomfort urinating, diarrhea with bleeding, and penile and anal itching. On day three, a genital herpes infection was suspected, but no treatment was started.

After two days, he presented to the dermatology clinic with worsening lymphadenopathy (swollen lymph nodes ), where positive mpox virus PCR results were obtained. His Mpox Severity Score System (MPOX-SSS) was 10 (of a maximum score of 12).

No antiviral treatment was administered, no hospitalization was required and the patient was home isolated. After 21 days, a control swab was still positive and the isolation had to be extended to day 25 from symptom onset, when finally all scabs fell off the lesions and PCR test on viral swab was negative.

The authors say, "This was Austria's first mpox breakthrough case. Despite no hospitalization, the clinical course was not less severe than in unvaccinated patients, with longer disease duration and higher scores on the mpox severity scale. The 14-month interval between complete vaccination and infection suggests vaccine-induced immunity could be not durably protective.

"This case underscores the importance of clinical suspicion for mpox in high-risk groups, even if fully vaccinated with 2-doses. Breakthrough infections need to be explored further, as well as the possibility of vaccine boosters in vaccinated groups with epidemiological risky behaviors."

They add, "The Austrian Vaccine Board updates its national mpox vaccine strategy annually based on new scientific evidence. Currently, there is no nationwide recommendation for booster shots after completing the currently recommended (Jynneos) vaccination regimen, even for high-risk groups.

"However, any potential changes to the vaccination strategy will depend on filling critical knowledge gaps in mpox immunity. These gaps include understanding the current level of immunity, the durability of immune responses, and the long-term vaccine effectiveness in high-risk groups."

Explore further

Feedback to editors

asthma attack case study exam 2

Person is diagnosed with bird flu after being in contact with cows in Texas

3 hours ago

asthma attack case study exam 2

'Pathogen prospecting': Mosquito researchers track malaria's history by examining its epidemiology

asthma attack case study exam 2

Pilot study shows ketogenic diet improves severe mental illness

asthma attack case study exam 2

Chatbot outperforms physicians in clinical reasoning, but also underperforms against residents on many occasions

asthma attack case study exam 2

Reducing late-night alcohol sales curbed all violent crimes by 23% annually in a Baltimore neighborhood: Study

asthma attack case study exam 2

Scientists pioneer immunotherapy technique for autoimmune diseases

asthma attack case study exam 2

Researchers develop more broadly protective coronavirus vaccine

4 hours ago

asthma attack case study exam 2

Scientists discover speed of visual perception ranges widely in humans

5 hours ago

asthma attack case study exam 2

Move more, sleep better: Study finds physical activity lengthens REM latency

6 hours ago

asthma attack case study exam 2

Siris tree leaves hold promise for stopping spread of breast cancer cells, say researchers

7 hours ago

Related Stories

asthma attack case study exam 2

JYNNEOS vaccination provides protection against mpox

Dec 9, 2022

asthma attack case study exam 2

Swedish study indicates decline of neutralizing antibodies to mpox virus during the first month after vaccination

Mar 30, 2024

asthma attack case study exam 2

Fewer symptoms for mpox infection seen after vaccination

Dec 29, 2022

asthma attack case study exam 2

Mpox vaccine found to be protective by CDC

May 22, 2023

asthma attack case study exam 2

US mpox cases rising again as vaccinations lag

Mar 28, 2024

asthma attack case study exam 2

Disparities in mpox vaccine uptake could leave many vulnerable to resurgence

Feb 12, 2024

Recommended for you

asthma attack case study exam 2

COVID-19 research: Study reveals new details about potentially deadly inflammation

Mar 29, 2024

asthma attack case study exam 2

Enhanced melanoma vaccine offers improved survival for men

asthma attack case study exam 2

High-resolution images reveal similarities in protein structures between Alzheimer's disease and Down syndrome

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Asthma Attack Case Study 4301 .docx

    asthma attack case study exam 2

  2. The Asthma Attack Case Study 1.docx

    asthma attack case study exam 2

  3. Bronchial Asthma in Acute Exacerbation Case Study

    asthma attack case study exam 2

  4. Navigating an Asthma Attack

    asthma attack case study exam 2

  5. How To Treat Asthma Attack

    asthma attack case study exam 2

  6. Asthma

    asthma attack case study exam 2

VIDEO

  1. Asthma Case Study

  2. How to Protect Yourself During Asthma Peak Week

  3. Asthma: Causes, Triggers, Risk Factors, Signs & Symptoms, Treatment

  4. Case study on asthma #asthma

  5. Exam Hall में Cheating 😱 3 Immediate Steps! ⚠️ Exam Hall Tips #examtips #studytips

  6. pulling an all nighter to study for midterms exam week

COMMENTS

  1. Asthma Attack Case Study (Exam 2) Flashcards

    Study with Quizlet and memorize flashcards containing terms like According to the passage above, what are the three factors involving the airways that lead to an asthma attack?, What is contained within a quick-relief rescue inhaler?, How did the quick-relief rescue inhaler help Jaden to breathe easier at the race track? and more.

  2. Respiratory Pathophysiology: Asthma Attack Case Study

    Asthma Case Study - NUR2063 Section BMPF1A0S - Essentials of Pathophysiology; ... NUR2603 Exam 2 Focused Review 2 .docx. Essentials of Pathophysiology 100% (39) 28. ... and standard treatment asthmatic attacks. She will also go over patient J.'s asthma attack case and explain the best clinical approaches to his specific case. Patient J. Is ...

  3. Educational Case: Asthma: Clinical Features and Morphologic Findings

    What Is the Diagnosis Based on Clinical Findings and Pulmonary Function Test? Clinical presentation (recurrent, episodic attacks of wheezing, cough, dyspnea, itchy red eyes, nasal discharge, stuffiness, and chest tightness), and PFT findings (FEV1/FVC of 0.65, FEV1 is 60% of predictive and post-bronchodilator therapy the FEV1 increases to 74% of predictive) are consistent with the diagnosis of ...

  4. Respiratory Case Study

    Figure 1. The respiratory passageways in a non-asthmatic (L) bronchoconstriction can severely decrease the diameter of the. and asthmatic (R) lung. Credit: BruceBlaus, cc by 3.0. already swollen, mucus-producing airways, making it very. difficult to move air into and out of the lungs. The decrease in air flow can range from mild to life ...

  5. Case Study Assignment #3 Asthma

    Case Study. Case Study Assignment #3 Asthma. Care MGMT 2. February 9, 2020. Keiser University. Asthma. Are B.'s vital signs acceptable? State your rationale. B.'s vital signs are not acceptable. His systolic BP is elevated, he is tachycardic, and tachypneic. He is febrile with a temperature of 100ºF.

  6. Determinants of Acute Asthma Attack among adult asthmatic patients

    Acute asthma attack is one of the most common causes of visits to hospital emergency departments in all age groups of the population and accounts for the greater part of healthcare burden from the disease. Despite, Acute asthma attack is an important public health problem that affects not only the patients, but also to the family, health professionals, health care institutions and development ...

  7. The Asthma Attack Case

    2. If Tim Hortons was to conduct a needs analysis following the asthma attack, what methods and sources should they use? Explain the advantages and disadvantages of each method and source. There are several of methods and sources that Tim Horton's could use if they were to conduct a needs analysis following the asthma attack incident.

  8. Challenging case of severe acute asthma in a mechanically ventilated

    1. INTRODUCTION. Acute severe asthma is a life‐threatening emergency characterized by severe tachypnea, tachycardia, and type 1 respiratory failure. 1 According to the international standard guidelines, it is managed with bronchodilators, systemic steroids, and magnesium sulfate in emergency cases. 2 Here, we describe a case of a 38 years old male who presented with a severe asthmatic attack ...

  9. RN Gas Exchange/Oxygenation: Asthma 3.0 Case Study Test

    Answer: Albuterol. Rationale: The nurse should instruct the parents that albuterol is a short-acting bronchodilator that alleviates bronchospasm during acute asthma attacks. It has a rapid onset of 5 to 15 min when inhaled. Albuterol is also used to prevent exercise-induced asthma attacks.

  10. Asthma

    Case Study. A 29-year-old woman with history of asthma presents with cough and shortness of breath after a recent upper respiratory tract infection. ... HR 115, RR 26, 93% oxygen saturation on room air. On exam, she is alert and able to speak in full sentences but noticeably tachypneic when talking. Her pulmonary exam reveals bilateral end ...

  11. PDF Part I

    Case copyright held by the National Center for Case Study Teaching in Science, University at Buffalo, ... "Asthma Attack!" by Hollie L. Leavitt Page 2 Part II - The Oxygen-Hemoglobin Dissociation Curve ... Spirometry is a test that is done as part of a normal, routine check-up for an asthmatic. In addition, it is also often per-

  12. Clinical case study

    Clinical case study - asthma . 2019 . Clinical Case Study - Asthma. pdf. Clinical Case Study - Asthma. 6.34 MB. Resource information. Respiratory conditions. Asthma; Respiratory topics. Disease management; Diagnosis; Type of resource. Presentation . Author(s) Jaime Correia de Sousa Ioanna Tsiligianni Miguel Román Rodriguez

  13. Case Study: Managing Severe Asthma in an Adult

    The AIR-2 trial followed, which was a multicenter, randomized, double-blind, sham-controlled study of 288 patients with severe asthma. 6 Similar to the RISA trial, patients in the treatment arm of ...

  14. Asthma

    Asthma is a common pathology, affecting around 15% to 20% of people in developed countries and around 2% to 4% in less developed countries. It is significantly more common in children. Up to 40% of children will have a wheeze at some point, which, if reversible by beta-2 agonists, is termed asthma, regardless of lung function tests.

  15. Asthma Attack!

    Abstract. This interrupted case study follows the progress of a pediatric patient who experiences an acute asthma exacerbation brought on by an environmental trigger. Students completing the case will synthesize their understanding of respiratory system anatomy and physiology with the clinical treatment of an obstructive lung disorder.

  16. ATI pediatric asthma case study test Flashcards

    What does your child's room once per week (Also wet mop the child's room and parent should also vacuum all carpets and furniture weekly using a HEPA filter. this will decrease the child's exposure to airborne irritants and allergens That can trigger the asthma attack) Study with Quizlet and memorize flashcards containing terms like A nurse is ...

  17. Case Study: 60-Year-Old Female Presenting With Shortness of Breath

    Case Presentation. The patient is a 60-year-old white female presenting to the emergency department with acute onset shortness of breath. Symptoms began approximately 2 days before and had progressively worsened with no associated, aggravating, or relieving factors noted. She had similar symptoms approximately 1 year ago with an acute, chronic ...

  18. A woman with asthma: a whole systems approach to supporting self

    A number of studies have demonstrated the challenges for primary care physicians in providing ongoing support for people with asthma. 31,48,49 In some countries, nurses and other allied health ...

  19. Match: Asthma Attack Case Study (Exam 2)

    Quizlet has study tools to help you learn anything. Improve your grades and reach your goals with flashcards, practice tests and expert-written solutions today. ... Match. Asthma Attack Case Study (Exam 2) Log in. Sign up. Ready to play? Match all the terms with their definitions as fast as you can. Avoid wrong matches, they add extra time!

  20. SNC4U 15% EXAM

    SNC4U snc4m case study: asthma attack! national center for case study teaching in science asthma attack! hollie leavitt department of biology college of. Skip to document. University; High School. ... During the test a patient is required to breathe through a tube that measures air flow into and out of their lungs. Usually the patient is asked ...

  21. Case report from Austria shows mpox breakthrough infection in man who

    New research to be presented at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID 2024) in Barcelona, Spain (27-30 April) details the case of a man who had received ...