Amanote Research

Task contexts in dutch mathematics education, national reflections on the netherlands didactics of mathematics, doi 10.1007/978-3-030-33824-4_3.

Available in full text

January 1, 2020

Springer International Publishing

Related search

Broadening teacher training: playful learning in non-formal contexts for science and mathematics education, task modelling in multiple contexts of use, debates in mathematics education, mathematics education, creativity in mathematics education, mathematics in teams—developing thinking skills in mathematics education, policy-to-practice contexts for early childhood mathematics in england, challenges in mathematics teacher education, problem solving in mathematics education.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Task Contexts in Dutch Mathematics Education

Profile image of Pauline Vos

2020, National Reflections on the Netherlands Didactics of Mathematics

Related Papers

Australian Primary Mathematics Classroom

Anne-Lise Roche

task contexts in dutch mathematics education

National Reflections on the Netherlands Didactics of Mathematics

Marja Van den Heuvel-Panhuizen

Angeliki Kolovou , Marja Van den Heuvel-Panhuizen

… Journal for Research in …

Arthur Bakker

ICME-13 Monographs

site.educ.indiana.edu

Pauline Vos

Teaching and Teacher Education

Gabriel Stylianides

Mathematical tasks embedded in real-life contexts have received increased attention by educators, in part due to the considerable levels of student engagement often triggered by their motivational features. Nevertheless, it is often challenging for teachers to implement high-level (i.e., cognitively demanding), real-life tasks in ways that exploit their motivational features without overshadowing the mathematics involved. This paper proposes an analytic

Monica Wijers

This paper deals with the challenge to establish problem solving as a living domain in mathematics education in The Netherlands. While serious attempts are made to implement a problem-oriented curriculum based on principles of realistic mathematics education with room for modelling and with integrated use of technology, the PISA 2003 results suggest that this has been successful in educational practice only to a limited extent. The main difficulties encountered include institutional factors such as national examinations and textbooks, and issues concerning design and training. One of the main challenges is the design of good problem solving tasks that are original, non-routine and new to the students. It is recommended to pay attention to problem solving in primary education and in textbook series, to exploit the benefits of technology for problem solving activities and to use the schools’ freedom to organize school-based examinations for types of assessment that are more appropriate for problem solving.

RELATED PAPERS

Israt Rayhan

Biophysical Journal

ahmed touhami

Journal of Oral and Maxillofacial Surgery

Marco Cargnel

Estuarine Coastal and Shelf Science

Mike Elliott

Delino Nhalungo

2006 First International Symposium on Environment Identities and Mediterranean Area

A. Toffanin

Annales Botanici Fennici

massoud ranjbar

Microelectronics Journal

Senthil Pari

CGR settlements

Rizqi Maulana

The Journals of Gerontology Series B: Psychological Sciences and Social Sciences

Jan Ondrich

The American Journal of Emergency Medicine

Frontiers in Genetics

Abolfazl Bahrami

Applied Nanoscience

Shweta Tripathi

Asset Analytics

Shreyansh Agarwal

The Angle Orthodontist

Serkan Görgülü

risky dimas putra

Aquaculture

Michele Scardi

Lukas Stepien

Tropical Animal Health and Production

Sibel Yavru

Abdulkarim Ali Deba

Medical journal of the Islamic Republic of Iran

Batool Tayefi

Acta Tropica

Antonio Ortega Rivas

FEMS Microbiology Ecology

Jasna Strus

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Book cover

Modern Mathematics pp 217–238 Cite as

A Tale of Two Systems: A History of New Math in The Netherlands, 1945–1980

  • Danny Beckers 4  
  • First Online: 09 March 2023

600 Accesses

Part of the History of Mathematics Education book series (HME)

New Math in the Netherlands will be described from the perspective of the ideals that were held within the institutes, instrumental in shaping Dutch education. In line with Bob Moon, and contrasting the analysis of some of the people who played a role in this history, we will describe the rise of realistic mathematics education as a realization of New Math, rather than as a breach with the past. Trust in mathematics and mathematicians played a role in the realization of a curriculum that accompanied the introduction of a modern school system, in 1968—supplanting the nineteenth-century system. Pillarization of Dutch society resulted in (1) a large number of stakeholders who all had their own ideas and power bases and (2) the necessity to find common ground, which was found in a focus on individual learning processes and stressing the need for developing individuality. This gave Dutch New Math its distinct flavor.

  • Adri Treffers
  • Educational ideals
  • Educational systems
  • Edu Wijdeveld
  • Fred Goffree
  • Hans Freudenthal
  • History of arithmetic education
  • History of mathematics education
  • Leon van Gelder
  • Modern mathematics
  • Susan Freudenthal
  • The Netherlands

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

The model introduced by Brandenburg was similar to the model that had been introduced by the German cybernetics enthusiast Wolfram Menzel, to whom he referred.

In this chapter, the phrase “New Math” will be used as synonymous to “modern mathematics” or “modernized mathematics,” since the Dutch educators participating in the discussions during the 1950s and 1960s did not distinguish between those expressions. As will be made clear, “New Math,” to the Dutch, had a broader meaning than has been outlined in Chap. 1 of this volume.

HBS is an acronym of “ Hogere BurgerSchool ” [Higher Civic School], a school type destined for pupils aged 12–18, from the middle classes. The curriculum of HBS would typically not include Classic languages.

ULO and MULO are acronyms for, respectively, “ Uitgebreid Lager Onderwijs ” [Extensive Lower Education] and “ Meer Uitgebreid Lager Onderwijs ” [More Extensive Lower Education]. In fact, they offered to the lower social classes forms of what we would today call secondary education.

The idea of developing personality in conjunction with intellect was not generally shared, but meritocratic ideas were widely accepted. In papers on education, Voorbereidend Hoger en Middelbaar Onderwijs (VHMO) [Preparatory Higher and Middle Class Education] became fashionable in the 1920s (and more ubiquitous in the 1950s), deriving unity from the age group, instead of the social class structure. The combination of gymnasia and HBS schools in so-called lycea was a precursor to that idea (see Beckers 2017a ). Schools offering “extended education” to pupils from the lower classes were excluded from this definition, although in practice some of these school functioned as a form of secondary education (Smid 2000 ).

MAVO, HAVO, and VWO are acronyms for, respectively, “ Middelbaar Algemeen Voortgezet Onderwijs ” [Lower General Secondary Education], “ Hoger Algemeen Voortgezet Onderwijs ” [Higher General Secondary Education], and “ Voorbereidend Wetenschappelijk Onderwijs ” [Pre-university Education].

In my opinion, Smid ( 2017 ) is far too modest in his assessment of Wansink’s ideas and influence. Of all the people, who claimed an overview over didactical issues in mathematics in the 1950s and 1960s, Wansink was the most knowledgeable (see Wansink 1966 ).

Publishers also played their part in curriculum reforms (see Pingel 2010 ). New series of textbooks that were published were indicative of teachers embracing modern teaching.

Literally: [ In dit werkje ] heb ik getracht om enige stappen te zetten op de zo gevaarlijke weg van de didactiek van het meetkunde-onderwijs. Gevaarlijk, want nimmer mag de didactiek leiden tot aanranding van de wezenlijke kenmerken van het betreffende vak en waar is dit gevaar groter dan juist bij het wiskunde-onderwijs in het algemeen en het meetkunde-onderwijs in het bijzonder?

Programmed instruction, mostly in the guise of textbooks, was popular. With funding from the Christian Foundation for Research into Education, the working group programmed instruction had already started experimenting in the early 1960s. One result was a series of textbooks on algebra (Bouman et al. 1965 ). As didactical innovations, these experiments were also embraced by the Dutch NEF branch, who organized huge annual conferences on the subject since 1965. Van Gelder, who also liked to experiment with closed-circuit television and other technologies to further education, was one of the driving forces behind these conferences (Archive WVO, inv. nr. 37). The CMLW experimented with programmed instruction with a textbook on probability (Karman n.d. ). See Beckers ( 2015a ) for more details.

Distancing themselves from the old A and B curricula in HBS and gymnasium , the course names “ wiskunde I ” [mathematics I] and “ wiskunde II ” [mathematics II] could not have been chosen better.

Jenaplan refers to a school system based on an educational philosophy conceived and founded by the German pedagogue Peter Petersen (1884–1952).

Also people active in the CMLW published textbooks: Van Dormolen ( 1968 ), Van Dormolen ( 1969 ), Kuipers et al. ( 1969 ), Westerman ( 1969–1970 ), Kindt et al. ( 1969 ).

Wiskobas and Wiskivon are acronyms for, respectively, “ Wiskunde in het basisonderwijs ” [Mathematics in primary education] and “ Wiskunde in het voortgezet onderwijs ” [Mathematics in secondary education].

HEWET is an acronym for “ Herverkaveling Wiskunde I en II ” [Reshuffling Mathematics I and II].

Alberts, G. (1998). Jaren van berekening: Toepassingsgerichte initiatieven in de Nederlandse wiskunde-beoefening 1945 – 1960 [Years of calculation: Application-oriented initiatives in Dutch mathematical practice 1945–1960] . Amsterdam, The Netherlands: AUP.

Google Scholar  

Amsing, H. T. A. (2016). Vader van de middenschool: Leon van Gelder (1913–1981) [Father of the middle school: Leon van Gelder (1913–1981)]. In V. Busato, M. van Essen, & W. Koops (Eds.), Zeven grondleggers van de onderwijskunde [Seven founding fathers of educational science] (pp. 242–282). Amsterdam, The Netherlands: Bert Bakker.

Beckers, D. (2015a). Geprogrammeerde cursussen [Programmed courses]. Euclides, 91 (2), 8–9.

Beckers, D. (2015b). Perfectioneringscursussen [Perfection courses]. Euclides, 90 (5), 22–23.

Beckers, D. (2016a). Marvellous mathematics. How mathematicians wanted to improve the quality of life in post war Europe, 1945–1975. DVT: Dějiny věd a techniky, 49 (4), 227–248.

Beckers, D. (2016b). Wiskundige voor een betere wereld: Hans Freudenthal (1905–1990) [Mathematician for a better world: Hans Freudenthal (1905–1990)]. In V. Busato, M. van Essen, & W. Koops (Eds.), Zeven grondleggers van de onderwijskunde [Seven founding fathers of educational science] (pp. 113–158). Amsterdam, The Netherlands: Bert Bakker.

Beckers, D. (2017a). HBS: Van modern instituut tot fossiel in 100 jaar [HBS: From modern institution to fossil in 100 years]. Studium, 10, 149–159.

CrossRef   Google Scholar  

Beckers, D. (2017b). Kijk op kans [Look on luck]. Euclides, 92 (4), 23–25.

Beckers, D. (2019). Why to publish on mathematics education so as to be useful? Educational studies in Mathematics and its founder Hans Freudenthal. Educational Studies in Mathematics, 101, 1–11.

Blom, K. (2000). Van de acten van bekwaamheid. De akten K1, K5 en lo wiskunde en hun geschiedenis [About the acts of aptitude. The acts K1, K5 and lo mathematics and their history]. In F. Goffree, M. van Hoorn, & B. Zwaneveld (Eds.), Honderd jaar wiskundeonderwijs [One hundred years of mathematics education] (pp. 89–104). Leusden, The Netherlands: NvWL.

Blom, S. (2004). Education. In D. Fokkema & F. Grijzenhout (Eds.), Dutch Culture in a European perspective: Accounting for the past, 1650 – 2000 (pp . 197–228). Assen, The Netherlands: Van Gorcum.

Boermeester, C. (1955). Over meetkunde-onderwijs en psychologie [About geometry education and psychology]. Groningen, The Netherlands-Djakarta, Indonesia: J. B. Wolters.

Boermeester, C., Burger, B., & Van Hiele, P. M. (1967–1971). Van A tot Z [From A to Z] (Textbook series, 15 volumes; later volumes by Van Hiele, Kok, and Schuring) . Purmerend, The Netherlands: Muuses.

Bos, J. (2011). M. J. Langeveld. Pedagoog aan de hand van het kind [M. J. Langeveld. Pedagogue on the basis of the child]. Amsterdam, The Netherlands: Boom.

Bos, W., & Lepoeter, P. E. (1954). Wegwijzer in de meetkunde I [Guide to geometry I]. Amsterdam, The Netherlands: Meulenhoff.

Bouman, F., Geerts, W., & Lock, D. J. (1965). Algebra 1. Een geprogrammeerde cursus voor het VHMO [Algebra 1. A programmed course for VHMO]. Den Haag, The Netherlands: Meulenhoff.

Brandenburg, W. J. (1968). Modernisering van het wiskunde-onderwijs [Modernization of mathematics education]. Groningen, The Netherlands: Wolters-Noordhoff.

Brandenburg, W. J. (1972). Mathematische modellen in de didaktiek [Mathematical models in didactics]. Groningen, The Netherlands: Wolters-Noordhoff.

Broekman, H. (1970). Didactiekcommissie van de Nederlandse Vereniging van Wiskundeleraren [Didactics committee of the Dutch Association of Mathematics Teachers]. Euclides, 46, 8–11.

Broekman, H. (2005). Helpen met leren helpt! Een hommage aan Pierre van Hiele [Helping to learn helps! A tribute to Pierre van Hiele]. Euclides, 80, 266–270.

Bunt, L. N. H. (1949). De leerstof van ons wiskunde-onderwijs. Een onderzoek naar opvattingen en gebruiken dienaangaande [The subject matter of our mathematics education. An examination of views and practices in this regard]. Groningen, The Netherlands-Batavia, Indonesia: J. B. Wolters.

Bunt, L. N. H. (1950). The development of the ideas of number and quantity according to Piaget. A synthesis and a criticism . Groningen, The Netherlands: J. B. Wolters.

Bunt, L. N. H. (1954). Van Ahmes tot Euclides. Hoofdstukken uit de geschiedenis van de wiskunde [From Ahmes to Euclid. Chapters in the history of mathematics]. Groningen, The Netherlands: J. B. Wolters.

Bunt, L. N. H. (1956). Statistiek voor het voorbereidend hoger en middelbaar onderwijs [Statistics for preparatory higher and secondary education]. Groningen, The Netherlands-Djakarta, Indonesia: J. B. Wolters.

Bunt, L. N. H. (1968). Algebra voor de brugklas. Een geprogrammeerde cursus [Algebra for the first year. A programmed course]. Groningen, The Netherlands: Wolters.

Bussato, V. (2014). A. D. De Groot (1914–2006): Meester in de psychologie [A. D. De Groot (1914–2006): Master of psychology]. In V. Bussato, M. van Essen, & W. Koops (Eds.), Van fenomenologie naar empirisch-analytische psychologie [From phenomenology to empirical-analytical psychology] (pp. 249–314). Amsterdam, The Netherlands: Bert Bakker.

CMLW. (1967a). Heroriënteringscursus “Computer Wiskunde.” Algorithmen en rekenmachine [Reorientation course “Computer Mathematics.” Algorithms and calculator] . Utrecht, The Netherlands: CMLW.

CMLW. (1967b). Interimrapport met toegevoegde discussienota’s [Interim report with added discussion notes]. Utrecht, The Netherlands: CMLW.

CMLW. (1969). Toelichting op het leerplan wiskunde van de mavo, onderbouw havo en onderbouw vwo [Explanatory notes to the curriculum for mathematics in mavo, junior havo and junior vwo]. Utrecht, The Netherlands: CMLW.

Colomb, J., & Glaymann, M. (1971). Verzamelingen, logica en ponskaarten [Sets, logic and punch cards]. ‘s Hertogenbosch, The Netherlands: L. C. G. Malmberg.

CPS. (1964). Stemmen uit de praktijk. Vernieuwing van het wiskundeonderwijs [Voices from the field. Renewing mathematics education]. Den Haag, The Netherlands: CPS.

De Bock, D., & Vanpaemel, G. (2019). Rods, sets and arrows. The rise and fall of modern mathematics in Belgium . Cham, Switzerland: Springer.

De Groot, A. D. (1957). Een inzicht-test voor meetkunde [A test for understanding in geometry]. Euclides, 32 (6), 218–224.

De Groot, A. D. (1966). Vijven en zessen. Cijfers en beslissingen: Het selectieproces in ons onderwijs [Fives and sixes. Grades and decisions: The selection process in our education system]. Groningen, The Netherlands: Wolters-Noordhoff.

De Jong, W. (2020). Civic education and contested democracy. Towards a pedagogic state in the Netherlands post 1945 . Cham, Switzerland: Springer.

De Miranda, J. (1956). Het afbeelden van getallenrijen en het werken met grafieken in de wiskundeleergang van de eerste klas M.O. [Mapping sequences of numbers and working with graphs in the first grade of secondary education]. Euclides, 32 (1), 15–27.

De Miranda, J. (1957). Schoolvorderingentest of onderzoek naar verkregen inzicht [School progress test or examination of acquired understanding]. Mededelingenblad van de Wiskunde Werkgroep der WVO, 5 (5), 4–6.

De Moor, E. (1999). Van vormleer naar realistische meetkunde [From primary school geometry to realistic geometry]. Utrecht, The Netherlands: CD-B.

De Moor, E. (2001). Het kistje van Van Albada [Van Albada’s box]. De Nieuwe Wiskrant, 21 (2), 32–43.

De Moor, E. (2005). HF en de NVORWO [HF and the NVORWO]. In H. ter Heege, T. Goris, R. Keijzer, & L. Wesker (Eds.), Freudenthal 100. Speciale ter gelegenheid van de honderdste geboortedag van Professor Hans Freudenthal [Freudenthal 100. Special edition [of Panama Post and Nieuwe Wiskrant ] on the occasion of the 100th birthday of Professor Hans Freudenthal] (pp. 132–134). Utrecht, The Netherlands: Freudenthal Institute.

De Moor, E., & Groen, W. (2012). Kijkmeetkunde, een ander uitgangspunt (1970–1980) [Vision geometry, a new perspective (1970–1980)]. Nieuw Archief voor Wiskunde, 5 (13) , 248–253.

Duvert, L., Gauthier, R., & Glaymann, M. (1971a). Moderne wiskunde-opdrachten serie I. Verzamelingen [Modern mathematics tasks series I. Sets]. ‘s Hertogenbosch, The Netherlands: L. C. G. Malmberg.

Duvert, L., Gauthier, R., & Glaymann, M. (1971b). Moderne wiskunde-opdrachten serie II. Relaties [Modern mathematics tasks series I. Relations]. ‘s Hertogenbosch, The Netherlands: L. C. G. Malmberg.

Freudenthal, H. (1975a). Een internationaal vergelijkend onderzoek over wiskundige studieprestaties [An international comparative survey of mathematical study performance]. Pedagogische Studiën, 52, 43–55.

Freudenthal, H. (1975b). Pupils’ achievements internationally compared—the IEA. Educational Studies in Mathematics, 6, 127–186.

Freudenthal, H., Janssen, G., Sweers, W., Van Barneveld, G., Bosman, J., Van den Brink, F., … Wijdeveld, E. (1976). Five years IOWO. Educational Studies in Mathematics, 7 (3), 185–367.

Freudenthal-Lutter, S. J. C. (1969). De logiblokken [The logical blocks]. Denken en Rekenen, 1, 10–18.

Goffree, F. (1982–1985). Wiskunde & didactiek voor aanstaande leraren basisonderwijs [Mathematics & didactics for prospective primary school teachers] (3 volumes). Groningen, The Netherlands: Wolters-Noordhoff.

Goffree, F., Sinnema, J.. & Wijdeveld, E. (1968). Modern math in de basisschool. Indrukken van een experiment in Edinburgh [Modern math in elementary school. Impressions of an Edinburgh experiment]. Groningen, The Netherlands: Wolters-Noordhoff.

Goffree, F., Treffers, A., & Wijdeveld, E. (1971a). Wiskunde op de basisschool? (I) [Mathematics in primary school? (I)]. Euclides, 46 (8), 309–314.

Goffree, F., Treffers, A., & Wijdeveld, E. (1971b). Wiskunde op de basisschool? (II) [Mathematics in primary school? (I)]. Euclides, 47 (2), 45–53.

Haas, E. (1995). Op de juiste plaats. De opkomst van de bedrijfs- en schoolpsychologische beroepspraktijk in Nederland [In the right place. The emergence of the professional practice of business and school psychology in the Netherlands]. Hilversum, The Netherlands: Verloren.

Hooghiemstra, D. (2013). De geest in dit huis is liefderijk. Het leven en De Werkplaats van Kees Boeke (1884 – 1966) [The spirit in this house is lovely. The life and school of Kees Boeke (1884–1966)]. Amsterdam, The Netherlands: Arbeiderspers.

IOWO. (1973). Wiskunde lbo. Startpunt leerplanontwikkeling [Mathematics lbo. Starting point curriculum development]. Utrecht, The Netherlands: IOWO.

IOWO. (1979). Positie IOWO in discussie [Position of IOWO in discussion]. Euclides, 54 (10) , 404.

Jacobs, H. J., Kniep, W. J., & Krooshof, G. (1967). Moderne wiskunde voor voortgezet onderwijs. Deel 1 voor de brugklas [Modern mathematics for secondary education. Part 1 for the first year]. Groningen, The Netherlands: Wolters-Noordhoff.

Karman, D. (n.d.). Wat is mijn kans? Een geprogrammeerde instructie [What are my chances? A programmed instruction]. Utrecht, The Netherlands: CMLW.

Kennedy, J. C. (2017). A concise history of The Netherlands . Cambridge, United Kingdom: CUP.

Kindt, M., & Maassen, A. J. T. (1967). Proeve van een gemoderniseerde algebra [First draft of modernized algebra] (2 volumes). Utrecht, The Netherlands: Pressa Trajectina.

Kindt, M., Maassen, A. J. T., & Van Oosten, C. P. S. (1969). Moderne algebracursus [Modern algebra course]. ‘s Hertogenbosch, The Netherlands: Malmberg.

Krooshof, G. (1968). Wiskunde is het ontdekken van relaties [Mathematics is the discovery of relations]. In L. van Gelder, E. Wijdeveld, F. Goffree, & G. Krooshof (Eds.), Moderne wiskunde in het basisonderwijs [Modern mathematics in primary education] (pp. 61–80). Groningen, The Netherlands: Wolters-Noordhoff.

Krooshof, G. (Ed.). (1972). I.O.W.O. ter gelegenheid van de officiële opening [I.O.W.O. on the occasion of its official opening]. Euclides, 47 (7–8), 237–333.

Kuipers, M. G., Siepelinga, J., Troelstra, R., & Tromp, G. (1969). Gemoderniseerde meetkunde. Op basis van afbeeldingen [Modernized geometry. On the basis of mappings]. Groningen, The Netherlands: Wolters-Noordhoff.

La Bastide van Gemert, S. (2015). All positive action starts with criticism. Hans Freudenthal and the didactics of mathematics . Dordrecht, The Netherlands: Springer.

Leeman, H. T. M. (1961). Antwoord op de installatiereden [van Stubenrouch], uitgesproken door de voorzitter [Response to the installation speech [by Stubenrouch], delivered by the president]. Den Haag, The Netherlands: CMLW.

Levering, B. (2015). Praktische wetenschap als levenslange ambitie. Martinus Jan Langeveld (1905–1989) [Practical science as a lifelong ambition. Martinus Jan Langeveld (1905–1989)]. In V. Bussato, M. van Essen, & W. Koops (Eds.), Vier grondleggers van de pedagogiek [Four founding fathers of pedagogy] (pp. 97–166). Amsterdam, The Netherlands: Bert Bakker.

Loonstra, F., & Vredenduin, P. G. J. (Eds.). (1962). Modernization of mathematical teaching in the Netherlands . Groningen, The Netherlands: J. B. Wolters.

Maassen, A. J. T., & Oosten, C. P. S. (1961). Planimetrie I [Plane geometry]. ‘s Hertogenbosch, The Netherlands: Malmberg.

Maassen, A. J. T., & Oosten, C. P. S. (1962). Mappings, relations, functions. In F. Loonstra & P. G. J. Vredenduin (Eds.), Modernization of mathematical teaching in the Netherlands (pp. 43–47). Groningen, The Netherlands: J. B. Wolters.

Maassen, J. (2000). De vereniging en het tijdschrift [The association and the journal]. In F. Goffree, M. van Hoorn, & B. Zwaneveld (Eds.), Honderd jaar wiskundeonderwijs [One hundred years of mathematics education] (pp. 43–56). Leusden, The Netherlands: NvWL.

Meijers, J. (n.d.). 35 kleuterspelletjes met Malmbergs Logiblokken [35 preschool games with Malmberg’s logical blocks] . ‘s Hertogenbosch, The Netherlands: Malmberg.

Mellink, A. G. M. (2014). Worden zoals wij: Onderwijs en de opkomst van de geïndividualiseerde samenleving sinds 1945 [Becoming like us: Education and the rise of the individualized society since 1945]. Amsterdam, The Netherlands: UvA.

Monna, A., & Van der Put, M. (2004). Antonie Frans Monna. Ambtenaar en wiskundige [Antonie Frans Monna. Civil servant and mathematician]. Nieuw Archief voor Wiskunde, 5 (2), 136–146.

Pingel, F. (2010). UNESCO Guidebook on textbook research and textbook revision . 2nd edition . Paris, France-Braunschweig, Germany: UNESCO.

Smid, H. J. (2000). Wiskundeonderwijs op bijna vergeten scholen. Wiskunde op de (m)ulo. [Mathematics education in nearly forgotten schools. Mathematics at the (m)ulo]. In F. Goffree, M. van Hoorn, & B. Zwaneveld (Eds.), Honderd jaar wiskundeonderwijs [One hundred years of mathematics education] (pp. 121–138). Leusden, The Netherlands: NvWL.

Smid, H. J. (2004). Bos en Lepoeter of: de terugkeer van de zelfwerkzaamheid [Bos and Lepoeter or the return of self-effort]. Euclides, 79, 254–259.

Smid, H. J. (2011). Het geheugen [Memory]. Euclides, 87, 317–320.

Smid, H. J. (2012). The first international reform movement and its failure in the Netherlands. In K. Bjarnadóttir, F. Furinghetti, J. M. Matos, & G. Schubring (Eds.), “Dig where you stand” 2. Proceedings of the Second International Conference on the History of Mathematics Education (pp. 463–475). Lisbon, Portugal: New University of Lisbon.

Smid, H. J. (2015). Zestig jaar hart voor wiskundeonderwijs [Sixty years of heart for mathematics education]. Utrecht, The Netherlands: NVvW.

Smid, H. J. (2017). Johan Wansink and his role in Dutch mathematics education. In K. Bjarnadóttir, F. Furinghetti, M. Menghini, J. Prytz, & G. Schubring (Eds.), “Dig where you stand” 4. Proceedings of the Fourth International Conference on the History of Mathematics Education (pp . 369–381). Rome, Italy: Edizioni Nuova Cultura.

Stubenrouch, G. C. (1961). Installatierede, uitgesproken door de staatssecretaris van Onderwijs, Kunsten en Wetenschappen [Installation speech delivered by the State Secretary of Education, Arts and Sciences]. Den Haag, The Netherlands: CMLW.

Treffers, A. (1978). Wiskobas, doelgericht [Wiskobas, goal-oriented]. Utrecht, The Netherlands: IOWO.

Troelstra, R., & Kuipers, A. M. (1965). Proeve van een gemoderniseerde meetkunde [First draft of a modernized geometry]. Utrecht, The Netherlands: CMLW

Van Achter, V. (1969). Nicole Picard. Denken en Rekenen, 1, 33–37.

Van der Sluis, A. (1969). Computers en algoritmen [Computers and algorithms]. Groningen, The Netherlands: Wolters-Noordhoff.

Van Dormolen, J. (1968). Algebra voor havo en vwo [Algebra for havo en vwo]. Den Haag, The Netherlands-Brussels, Belgium: Van Goor.

Van Dormolen, J. (1969). Analyse volgens het leerplan wiskunde I voor het vwo [Analysis according to the curriculum mathematics I for vwo]. Den Haag, The Netherlands-Brussels, Belgium: Van Goor.

Van Essen, M. (2006). Kwekeling tussen akte en ideaal [Prospective primary school teacher between act and ideal]. Nijmegen, The Netherlands: SUN.

Van Gelder, L. (1958). Het leerproces van het rekenen [The learning process of arithmetic]. In De didactiek van het rekenen. Verslag van de werkweek Leraren wiskunde aan Prot. Christelijke kweekscholen [The didactics of arithmetic. Report of the work week Teachers of mathematics at Protestant Christian teacher training schools for primary education] (pp. 28–57). n.p.: CPS.

Van Gelder, L. (1959). Grondslagen van de rekendidactiek [Foundations of didactics of arithmetic]. Groningen, The Netherlands: J. B. Wolters.

Van Gelder, L. (1968a). Modern rekenen. New Mathematics in de basisschool [Modern arithmetic. New Mathematics in primary school]. In L. van Gelder, E. Wijdeveld, F. Goffree, & G. Krooshof (Eds.), Moderne wiskunde in het basisonderwijs [Modern mathematics in primary education] (pp. 5–16). Groningen, The Netherlands: Wolters-Noordhoff.

Van Gelder, L. (1968b). Veranderingen in het onderwijs [Changes in education]. Groningen, The Netherlands: Wolters-Noordhoff.

Van Hiele, P. M., & Van Hiele-Geldof, D. (1948). Werkboek der meetkunde [Workbook of geometry]. Purmerend, The Netherlands: Muuses.

Van Hiele, P. M., & Van Hiele-Geldof, D. (1950). Werkboek der algebra [Workbook of algebra]. Purmerend, The Netherlands: Muuses.

Van Hiele, P. M., & Van Hiele-Geldof, D. (1963). Van figuren naar begrippen [From figures to concepts]. Purmerend, The Netherlands: Muuses.

Van Hoorn, M., & Guichelaar, J. (2018). De geschiedenis van het tijdschrift Pythagoras deel 1: Oprichting en succes [The history of the journal Pythagoras part 1: Founding and success]. Nieuw Archief voor Wiskunde, 5 (19), 9–18.

Vos, J., & Van der Linden, J. (2004). Waarvan akte. Geschiedenis van de MO-opleidingen, 1912 – 1987 [Noted. History of secondary education programs, 1912–1987]. Assen, The Netherlands: Van Gorcum.

Vredenduin, P. G. J. (1966). De bewijskracht van de diagrammen van Venn en de implicatie [The power of proof of Venn diagrams and the implication]. Euclides, 42, 33–41.

Vredenduin, P. G. J. (1967). Verzamelingen [Sets]. Groningen, The Netherlands: J.B. Wolters.

Vredenduin, P. G. J. (1980). Verzamelingen, functies, relaties en het HEWET-rapport [Sets, functions, relations and the HEWET report]. Euclides, 56, 49–53.

Wansink, J. H. (1956). Didactische revue [Didactic review]. Euclides, 32, 54–69.

Wansink, J. H. (1966). Didactische oriëntatie voor wiskundeleraren I [Didactic orientation for mathematics teachers I]. Groningen, The Netherlands: J. B. Wolters.

Wansink, J. H. (1979). Wat beoogt Wiskobas? [What does Wiskobas aim at?]. Euclides, 55, 2–6.

Wessels, J. (1969). Rekenen met kansen [Calculating with probabilities]. Groningen, The Netherlands: Wolters-Noordhoff.

Westerman, L. R. J. (1966). Meetkunde met vectoren [Geometry with vectors]. Utrecht, The Netherlands: CMLW.

Westerman, L. R. J. (1969–1970), Meetkunde met vectoren I, II [Geometry with vectors I, II]. Groningen, The Netherlands: Wolters-Noordhoff.

Wijdeveld, E. J. (1969a). Nieuwe Wiskunde I: Taal en logica [New Mathematics I: Language and logic]. Groningen, The Netherlands: Wolters-Noordhoff.

Wijdeveld, E. J. (1969b). Nieuwe Wiskunde II: Structuren [New Mathematics II: Structures]. Groningen, The Netherlands: Wolters-Noordhoff.

Wijdeveld, E. (2003). Omzien in verwondering [Looking back in wonder]. Euclides, 78 (5), 218–225.

Wijdeveld, E. J., & Goffree, F. (1968). Experimenten en onderzoekingen [Experiments and investigations]. In L. van Gelder, E. Wijdeveld, F. Goffree, & G. Krooshof (Eds.), Moderne wiskunde in het basisonderwijs [Modern mathematics in primary education] (pp. 17–60). Groningen, The Netherlands: Wolters-Noordhoff.

Zwaneveld, B., & De Bock, D. (2019). Lucas Bunt and the rise of statistics education in the Netherlands. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 2196–2203). Utrecht, The Netherlands: Utrecht University.

Download references

Author information

Authors and affiliations.

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Danny Beckers

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Danny Beckers .

Editor information

Editors and affiliations.

KU Leuven, Leuven, Belgium

Dirk De Bock

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Beckers, D. (2023). A Tale of Two Systems: A History of New Math in The Netherlands, 1945–1980. In: De Bock, D. (eds) Modern Mathematics. History of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-11166-2_11

Download citation

DOI : https://doi.org/10.1007/978-3-031-11166-2_11

Published : 09 March 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-11165-5

Online ISBN : 978-3-031-11166-2

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Ensuring Usability—Reflections on a Dutch Mathematics Reform Project

    task contexts in dutch mathematics education

  2. Math: matrices (Dutch)

    task contexts in dutch mathematics education

  3. The basics of the Dutch education system

    task contexts in dutch mathematics education

  4. (PDF) The Impact of Dutch Mathematics Education on Danish Mathematics

    task contexts in dutch mathematics education

  5. Math: matrices (Dutch)

    task contexts in dutch mathematics education

  6. 5 Illustrations that go with the 'Façade flags' task (VMBO GLTL

    task contexts in dutch mathematics education

VIDEO

  1. Dutch Education 😭 #dutch #education

  2. Task Force 141 Dutch

  3. performance task in mathematics 9

  4. Evaluating Functions

  5. Ons Nummersysteem -Plaatswaarde

  6. OPERATIONS ON FUNCTIONS: ADDITION AND MULTIPLICATION

COMMENTS

  1. Task Contexts in Dutch Mathematics Education

    A distinction is made between bare tasks (without contexts), tasks with mathematical contexts (e.g., matchstick pattern problems), dressed-up tasks (hiding a mathematical question), tasks with realistic contexts with questions that are useful within the context, and tasks with authentic contexts.

  2. PDF Task Contexts in Dutch Mathematics Education

    A distinction is made between bare tasks (without contexts), tasks with mathematical contexts (e.g., matchstick pattern problems), dressed-up tasks (hiding a mathematical question), tasks with realistic contexts with questions that are useful within the context, and tasks with authentic contexts.

  3. Task Contexts in Dutch Mathematics Education

    This chapter offers a description of task contexts in mathematics education in the Netherlands. International comparative studies show that the Dutch average percentage of mathematics tasks with real-life connections per lesson exceeds any other country by far. This tradition goes back more than 500 years, when the earliest mathematics textbooks in the Dutch language consisted entirely of ...

  4. (PDF) Task Contexts in Dutch Mathematics Education

    Task Contexts in Dutch Mathematics Education National Reflections on the Netherlands Didactics of Mathematics doi 10.1007/978-3-030-33824-4_3. Full Text Open PDF Abstract. Available in full text. Date. January 1, 2020. Authors Pauline Vos. Publisher. Springer International Publishing. Related search.

  5. Problems in Mathematics

    context problems, the students can develop mathematical •• the learning environment: this includes both the tools and understanding.

  6. Book Review: International and national reflections on the ...

    In contrast, the task of the authors of the national volume, Teaching and Learning in the Context of Realistic Mathematics Education, is more descriptive in nature: to present a systemic survey, from both an historical and a contemporary perspective, of the didactic landscape within the Netherlands.

  7. PDF ICME 13

    Task contexts in Dutch mathematics education Pauline Vos

  8. Didactics of Mathematics in the Netherlands

    The chapter starts with a section in which mathematics education in the Netherlands is viewed from four perspectives in which subsequently attention is paid to the role of mathematics and mathematicians, the role of theory, the role of design, and the role of empirical research. In all these themes Hans Freudenthal has played a key role.

  9. Task Contexts in Dutch Mathematics Education

    A distinction is made between bare tasks (without contexts), tasks with mathematical contexts (e.g., matchstick pattern problems), dressed-up tasks (hiding a mathematical question),...

  10. PDF MATHEMATICS IN CONTEXT

    school program. So the background of Mathematics in Contextis really a combi-nation of three things: the NCTM Curriculum and Evaluation Standards, the research base on a problem-oriented approach to the teaching of mathematics, and the Dutch realistic mathematics education approach. We submitted a propos-

  11. (PDF) Dutch Didactical Approaches in Primary School Mathematics as

    As expected, using different textbook series with different content and teaching methods results in pursuing different goals in mathematics education, which in turn results in different...

  12. (PDF) Didactics of Mathematics in the Netherlands

    Utrecht University Abstract and Figures This chapter highlights key aspects of the didactics of mathematics in the Netherlands. It is based on the Dutch contribution to the Thematic Afternoon...

  13. The realism of mathematical school tasks

    The realism of mathematical school tasks : Features and consequences. Torulf Palm. Published 2002. Mathematics, Education. Performance assessment and authentic assessment are recurrent terms in the literature on education and educational research. They have both been given a number of different meanings and unclear definitions and are in some ...

  14. A Spotlight on Mathematics Education in the Netherlands and ...

    1.1 Introduction The 13th International Congress on Mathematical Education (ICME-13) held in Hamburg, Germany, in 2016, and in particular the ICME-13 Thematic Afternoon session "European Didactic Traditions," was a trigger for Dutch mathematics didacticians to reflect on what is typical for mathematics education in their country.

  15. Facets of seventeenth century mathematics in the Netherlands = Facetten

    This chapter offers a description of task contexts in mathematics education in the Netherlands. International comparative studies show that the Dutch average percentage of mathematics ... Dutch and European mathematics education. In 1600 an Engineering Course, for surveyors and military engineers, was … Expand. Save. Challenging Descartes ...

  16. National Reflections on the Netherlands Didactics of Mathematics

    Task Contexts in Dutch Mathematics Education. Pauline Vos; Pages 31-53 Open Access. Mathematics and Common Sense—The Dutch School. Rijkje Dekker; ... fully enjoyed reading this monograph and learning about the multitude of examples and diverse perspectives in Dutch mathematics education. … For me, it was a very eye-opening experience to ...

  17. Context in Maths Test Questions: Does It Make a Difference?

    This chapter offers a description of task contexts in mathematics education in the Netherlands. International comparative studies show that the Dutch average percentage of mathematics tasks with … Expand. 6. PDF. 1 Excerpt; Save. Contexts for "pure" mathematics: a framework for analysing A-level mathematics papers.

  18. Task Contexts in Dutch Mathematics Education

    Using Mathematical Tasks Built around "Real" Contexts: Opportunities and Challenges for Teachers and Students; the Need for Greater Challenge and Relevance for Students in the Middle Years 2009 • Anne-Lise Roche Download Free PDF View PDF National Reflections on the Netherlands Didactics of Mathematics

  19. 7 'Fuel consumption of pumping machines' task from TIMSS 1999 (Martin

    For example, Vos (2020) has recently identified five different categories of mathematical tasks in terms of their relation to reality: bare task, task with mathematical context, dressed-up...

  20. A Tale of Two Systems: A History of New Math in The ...

    In 1972, the Groningen professor Willem Jan Brandenburg (1921-2009) introduced, in a public lecture, a mathematical model of how pupils learn (Brandenburg 1972 ). 1 His presentation illustrated both the overwhelming trust in mathematics, as well as what he considered to be the most pressing problem: How to teach mathematics to a substantial numb...

  21. Authenticity in Extra-curricular Mathematics Activities: Researching

    Task Contexts in Dutch Mathematics Education. P. Vos. Mathematics, Education. 2020; This chapter offers a description of task contexts in mathematics education in the Netherlands. International comparative studies show that the Dutch average percentage of mathematics tasks with … Expand. 6. PDF.

  22. Pauline Vos (0000-0002-6964-9620)

    Task Contexts in Dutch Mathematics Education. ICME-13 Monographs 2020 | Book chapter DOI: 10.1007/978-3-030-33824-4_3 Part of ISSN: 2520-8322 Part of ISSN: 2520-8330 Show more detail. Source: Pauline Vos Using Social Simulations in Interdisciplinary Primary Education: An Expert Appraisal ...

  23. Toward a theoretical framework for task design in mathematics education

    Task design is an important element of effective mathematics teaching and learning. Past research in mathematics education has investigated task design in mathematics education from different perspectives (e.g., cognitive and cultural) and offered a number of (theoretical) frameworks and sets of principles. In this study, through a narrative research in the form of autoethnography, I reflected ...