literature review and behavioural analysis

  • Special Collections Home
  • Archives Home
  • Madrid Home
  • Assessement
  • Contact/Directory
  • Library Associates
  • Archives & Digital Services
  • Databases - Article Linker FAQ
  • Digital Collections
  • Government Information
  • Library Catalog
  • Library Catalog - Alerts/Other Material
  • Locating Materials in Pius Library
  • Meet your Librarian
  • SLU Journals and SLU Edited Journals
  • SLUth Search Plus
  • Special Collections
  • Research Guides
  • Academic Technology Commons
  • Course Reserves
  • Course Reserves FAQ
  • Interlibrary Loan
  • Journal Articles on Demand
  • Library Access
  • library Account
  • Library Instructions
  • Library Resources for Faculty and Staff
  • Off Campus Library Access
  • Questions? Ask Us!
  • Study Space and Lockers
  • Writing Program Information Literacy Instruction
  • Pius Faculty and Staff
  • Meet Your Pius Research Librarian
  • MCL Faculty and Staff
  • Meet Your MCL Liaison Librarian

Applied Behavior Analysis

  • Getting started
  • ABA-related Books
  • Core ABA Journals
  • Find articles in a database
  • Find a specific article

Basics of a Literature Review

Examples of literature reviews, citation searching.

  • Writing and APA Format
  • Managing Citations
  • Professional Information

Useful Books

  • Conducting Research Literature Reviews Pius Library Q180.55.M4 F56 2010
  • Preparing Literature Review Qualitative and Quantitative Approaches Pius Library Q180.55.E9 P36 2008 There are several example literature reviews in the appendix of this book.
  • Evaluating Research Articles From Start to Finish Pius Library Q180.55.E9 G57 2011
  • Evaluating Research Methodology for People Who Need to Read Research Pius Library Q180.55 .E9 D355 2011
  • Encyclopedia of Measurement and Statistics eBook
  • Encyclopedia of Research Design
  • Statistics for People Who Think They Hate Statistics Pius Library HA29 .S2365 2009
  • Systematic Reviews in the Social Sciences Pius Library H62.P457 2006
  • Systematic Approaches to a Successful Literature Review Pius Library LB1047.3.B66 2012

A literature review may be conducted in order to inform practice and/or policy, serve as a basic element in a thesis or dissertation or as part of a proposal to obtain funding. The process can be divided into a series of steps:

  • Choose a topic. Look at recent literature for ideas and do a bit of preliminary searching of the existing literature.
  • Clarify your review question and the scope of your review
  • Brainstorm search terms to use and think about your search strategy
  • Begin searching for articles. I strongly recommend you keep a search log to document which databases you searched and what search terms you used.
  • Capture and manage search results. You may want to export results to Endnote or other citation management tool (see Managing Citations tab in this guide)
  • Screen results for inclusion based on critera you define
  • Evaluate the  the articles. A worksheet which includes the bibliographic information about the article and summarizes elements of the article such as research design, interventions, findings, main variables etc. may give you a helpful overview
  • Synthesize results (this is the whole point!).

Literature reviews are part of a PhD dissertation. Use the Dissertations and Theses Full Text database to see the literature review chapters in the two PhD theses listed below. Just enter the dissertation title in quotes and you will retrieve the full text of the dissertation.

  • Using concurrent operants to evaluate perserverative conversation in children and adolescents diagnosed with Asperger's disorder by Matthew J. O'Brien
  • The effectiveness of specialized applied behavior analysis (ABA) on daily living skills for individuals with autism and related disorders ages 8 to 19 by Adriana Weyandt

literature review and behavioural analysis

  • << Previous: Find a specific article
  • Next: Writing and APA Format >>
  • Last Updated: Mar 12, 2024 12:47 PM
  • URL: https://libguides.slu.edu/ABA

Browse Econ Literature

  • Working papers
  • Software components
  • Book chapters
  • JEL classification

More features

  • Subscribe to new research

RePEc Biblio

Author registration.

  • Economics Virtual Seminar Calendar NEW!

IDEAS home

Mapping the field of behavioural biases: a literature review using bibliometric analysis

  • Author & abstract
  • 95 References
  • 2 Citations
  • Most related
  • Related works & more

Corrections

(Sri Aurobindo College of Commerce and Management)

(University School of Applied Management, Punjabi University)

Suggested Citation

Download full text from publisher, references listed on ideas.

Follow serials, authors, keywords & more

Public profiles for Economics researchers

Various research rankings in Economics

RePEc Genealogy

Who was a student of whom, using RePEc

Curated articles & papers on economics topics

Upload your paper to be listed on RePEc and IDEAS

New papers by email

Subscribe to new additions to RePEc

EconAcademics

Blog aggregator for economics research

Cases of plagiarism in Economics

About RePEc

Initiative for open bibliographies in Economics

News about RePEc

Questions about IDEAS and RePEc

RePEc volunteers

Participating archives

Publishers indexing in RePEc

Privacy statement

Found an error or omission?

Opportunities to help RePEc

Get papers listed

Have your research listed on RePEc

Open a RePEc archive

Have your institution's/publisher's output listed on RePEc

Get RePEc data

Use data assembled by RePEc

Systematic Literature Review: Behavioural Biases as the Determinants of Herding

  • First Online: 24 March 2024

Cite this chapter

literature review and behavioural analysis

  • Wang Yang 3 &
  • Ooi Kok Loang 3  

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 223))

114 Accesses

This systematic literature review explores the role of behavioural biases in driving herding behaviour in global stock markets. Analysing Scopus and SSCI-indexed research articles from January 2020 to November 2022, this study identifies five critical behavioural biases—representativeness, anchoring, availability, gambler fallacy, and overconfidence—as significant determinants of herding. Herding behaviour, characterised by investors following the actions of others, is found to have detrimental effects on individual investment portfolios and market perceptions. The research also suggests policy implications for financial industry professionals, emphasising the importance of recognising and mitigating these biases to enhance investment performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Ahmad, F.: Personality traits as predictor of cognitive biases: moderating role of risk-attitude. Qual. Res. Financ. Markets 12 (4), 465–484 (2020)

Article   Google Scholar  

Ahmad, M., Wu, Q.: Does herding behaviour matter in investment management and perceived market efficiency? Evidence from an emerging market. Manage. Decis. (ahead-of-print) (2022)

Google Scholar  

Ahmed, S.U., Ahmed, S.P., Abdullah, M., Karmaker, U.: Do socio-political factors affect investment performance? Cogent Econ. Financ. 10 (1), 2113496 (2022)

Apergis, N.: Overconfidence and US stock market returns. Financ. Res. Lett. 45 , 102186 (2022)

Ballis, A., Drakos, K.: Testing for herding in the cryptocurrency market. Financ. Res. Lett. 33 , 101210 (2020)

Boussaidi, R., AlSaggaf, M.I.: Contrarian profits and representativeness heuristic in the MENA stock markets. J. Behav. Exp. Econ. 97 , 101820 (2022)

Broughton, J.B., Lobo, B.J.: Herding and anchoring in macroeconomic forecasts: the case of the PMI. Empirical Economics 55 (3), 1337–1355 (2018)

Cao, M.M., Nguyen, N.T., Tran, T.T.: Behavioural factors on individual investors’ decision making and investment performance: a survey from the Vietnam Stock Market. J. Asian Financ. Econ. Bus. 8 (3), 845–853 (2021)

Cascão, A., Quelhas, A.P., Cunha, A.M.: Heuristics and cognitive biases in the housing investment market. Int. J. Housing Markets Anal. (ahead-of-print) (2022)

Chen, C., Li, G., Fan, L., Qin, J.: The impact of automated investment on peer-to-peer lending: investment behaviour and platform efficiency. J. Glob. Inf. Manage. (JGIM) 29 (6), 1–22 (2021)

Chiah, M., Tian, X., Zhong, A.: Lockdown and retail trading in the equity market. J. Behav. Exp. Financ. 33 , 100598 (2022)

Din, S.M.U., Mehmood, S.K., Shahzad, A., Ahmad, I., Davidyants, A., Abu-Rumman, A.: The impact of behavioural biases on herding behaviour of investors in Islamic financial products. Front. Psychol. 11 , 600570 (2021)

Gavrilakis, N., Floros, C.: The impact of heuristic and herding biases on portfolio construction and performance: the case of Greece. Rev. Behav. Financ. (2021)

Ghorban Nejad, S., Hansen, H.: Environmentally motivated travel reduction: the effects of availability, herding bias, and self-monitoring. Sustainability 13 (2), 691 (2021)

Goyal, P., Gupta, P., Yadav, V.: Antecedents to heuristics: decoding the role of herding and prospect theory for Indian millennial investors. Rev. Behav. Financ. (2021)

Gurdgiev, C., O’Loughlin, D.: Herding and anchoring in cryptocurrency markets: investor reaction to fear and uncertainty. J. Behav. Exp. Financ. 25 , 100271 (2020)

Herlina, H., Hadianto, B., Winarto, J., Suwarno, N.A.N.: The herding and overconfidence effect on the decision of individuals to invest stocks. J. Econ. Bus. 3 (4) (2020)

Hidajat, T., Primiana, I., Rahman, S., Febrian, E.: Why are people trapped in Ponzi and pyramid schemes? J. Financ. Crime 28 (1), 187–203 (2020)

Hwang, S., Rubesam, A., Salmon, M.: Beta herding through overconfidence: a behavioural explanation of the low-beta anomaly. J. Int. Money Financ. 111 , 102318 (2021)

Indārs, E.R., Savin, A., Lublóy, Á.: Herding behaviour in an emerging market: evidence from the Moscow exchange. Emerg. Mark. Rev. 38 , 468–487 (2019)

Iram, T., Bilal, A.R., Ahmad, Z., Latif, S.: Does financial mindfulness make a difference? A nexus of financial literacy and behavioural biases in women entrepreneurs. IIM Kozhikode Soc. Manage. Rev., 22779752221097194 (2022)

Jain, J., Walia, N., Kaur, M., Singh, S.: Behavioural biases affecting investors’ decision-making process: a scale development approach. Manage. Res. Rev. (2021)

Kumar, S., Srivastava, M., Prakash, V.: Challenges and opportunities for mutual fund investment and the role of Industry 4.0 to recommend the individual for speculation. In: Nayyar, A., Naved, M., Rameshwar, R. (eds.) New Horizons for Industry 4.0 in Modern Business. Contributions to Environmental Sciences & Innovative Business Technology. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-20443-2_4

Laryea, E., Owusu, S.P.: The impact of anchoring bias on investment decision-making: evidence from Ghana. Rev. Behav. Financ. (ahead-of-print) (2022)

Lebdaoui, H., Chetioui, Y., Ghechi, E.: The impact of behavioural biases on investment performance: does financial literacy matter? Int. J. Econ. Financ. Issues 11 (3), 13–21 (2021)

Liu, X., Loang, O.K.: Analysts’ forecast optimism and cash holding: evidence from China. Financ. Res. Lett. 57 , 104237 (2023)

Loang, O.K., Ahmad, Z.: Social factors and herd behaviour in developed markets, advanced emerging markets and secondary emerging markets. J. Contemp. East. Asia 19 (1), 97–122 (2020)

Loang, O.K., Ahmad, Z.: Does volatility mediate the impact of analyst recommendations on herding in Malaysian stock market? Econ. Bus. Rev. 7 (4), 54–71(2021)

Loang, O.K., Ahmad, Z.: Does volatility cause herding in Malaysian stock market? Evidence from quantile regression analysis. Millennial Asia, 09763996221101217 (2022)

Loang, O.K., Ahmad, Z.: Market overreaction, firm-specific information and macroeconomic variables in US and Chinese markets during COVID-19. J. Econ. Stud. 49 (8), 1548–1565 (2022)

Nath, H.B., Brooks, R.D.: Investor-herding and risk-profiles: a state-space model-based assessment. Pac. Basin Financ. J. 62 , 101383 (2020)

Rahman, M., Gan, S.S.: Generation Y investment decision: an analysis using behavioural factors. Manag. Financ. (2020)

Rasool, N., Ullah, S.: Financial literacy and behavioural biases of individual investors: empirical evidence of Pakistan stock exchange. J. Econ. Finance Adm. Sci. 25 (50), 261–278 (2020)

Salem, R.: Examining the investment behaviour of Arab women in the stock market. J. Behav. Exp. Financ. 22 , 151–160 (2019)

Sari, M., Nugraha, N.: Is overconfidence and herding in Ponzi scheme investors influenced by demographic factors? In: Advances in Business, Management and Entrepreneurship, pp. 453–456. CRC Press (2020)

Shukla, A., Rushdi, D., Jamal, N., Katiyar, D., Chandra, R.: Impact of behavioural biases on investment decisions ‘a systematic review’. Int. J. Manage. 11 (4) (2020)

Singh, J.K., Gupta, A., Uppal, C.: Assessing effectiveness of factor investing strategy in generating alpha returns during Covid-19. In: Aloysius Edward, J., Jaheer Mukthar, K.P., Asis, E.R., Sivasubramanian, K. (eds.) Current Trends in Economics, Business and Sustainability. ICEBS 2023. Contributions to Environmental Sciences & Innovative Business Technology. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-3366-2_21

Škrinjarić, T.: Revisiting herding investment behaviour on the Zagreb stock exchange: a quantile regression approach. Econ. Res. Financ. 3 (2), 119–162 (2018)

Talwar, S., Talwar, M., Tarjanne, V., Dhir, A.: Why retail investors traded equity during the pandemic? An application of artificial neural networks to examine behavioural biases. Psychol. Mark. 38 (11), 2142–2163 (2021)

Ukpong, I., Tan, H., Yarovaya, L.: Determinants of industry herding in the US stock market. Financ. Res. Lett. 43 , 101953 (2021)

Vo, X.V., Phan, D.B.A.: Herd behavior and idiosyncratic volatility in a frontier market. Pac. Basin Finan. J. 53 , 321–330 (2019)

Wu, G., Yang, B., Zhao, N.: Herding behaviour in Chinese stock markets during COVID-19. Emerg. Mark. Financ. Trade 56 (15), 3578–3587 (2020)

Zheng, Z., Tang, K., Liu, Y., Guo, J.M.: Gender and herding. J. Empir. Financ. 64 , 379–400 (2021)

Download references

Author information

Authors and affiliations.

City University Malaysia, Petaling Jaya, Malaysia

Wang Yang & Ooi Kok Loang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ooi Kok Loang .

Editor information

Editors and affiliations.

Adnan Kassar School of Business, Lebanese American University, Byblos, Lebanon

Rim El Khoury

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Yang, W., Loang, O.K. (2024). Systematic Literature Review: Behavioural Biases as the Determinants of Herding. In: El Khoury, R. (eds) Technology-Driven Business Innovation. Studies in Systems, Decision and Control, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-031-51997-0_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-51997-0_7

Published : 24 March 2024

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-51996-3

Online ISBN : 978-3-031-51997-0

eBook Packages : Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Systematic review article, association between low birth weight and impaired glucose tolerance in children: a systematic review and meta-analysis.

literature review and behavioural analysis

  • 1 Department of Pediatrics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
  • 2 Department of Gastroenterology, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China
  • 3 Department of Otolaryngology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
  • 4 Department of Nursing, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China

Background: A potential association between the onset of diabetes and normal birth weight (NBW) has been discovered. Diverse conclusions and study methodologies exist regarding the connection between low birth weight (LBW) and impaired glucose tolerance in children, underscoring the need for further robust research. Our institution is embarking on this study to thoroughly examine the association between LBW and impaired glucose tolerance in children.

Methods: We conducted searches on Cochrane Library, ScienceDirect, EMBASE, PubMed, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature data (CBM) online database, VIP full-text Database, and Wanfang Database to identify correlation analyses or case-control studies investigating the relationship between LBW and abnormal glucose tolerance in children. The search spanned from January 2010 to September 2023. The quality of observational studies was evaluated using the Newcastle–Ottawa Scale (NOS) tool. Data synthesis was performed using the statistical software RevMan 5.3 for meta-analysis.

Results: Based on the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines, we finally included 10 clinical control studies consisting of a total of 2971 cases. There wasn’t considerably change in blood sugar levels among LBW, NBW and high birth weight (HBW) infants ( P  > 0.05). There was no significant difference in insulin levels between LBW infants and NBW infants ( P  > 0.05). The HOMA-IR of LBW infants was considerably higher than that of NBW infants ( P  < 0.05). The risk of abnormal glucose tolerance in LBW infants was 0.42 times higher than that in NBW and HBW infants [Fisher's Z  = 0.42, 95% CI = (0.09, 0.75), P  = 0.01].

Conclusion: LBW is associated with an increased risk of abnormal glucose tolerance, as indicated by elevated HOMA-IR level in LBW infants compared to NBW and HBW pediatric population. Further research is needed to confirm and expand upon these findings to better understand the complex relationship between LBW and impaired glucose tolerance in children.

1 Introduction

In China, the prevalence of diabetes has surged, with over 30 million individuals affected, marking a substantial rise from 0.8% in 1980 to 3.5% in 2000 ( 1 , 2 ). A study conducted from 2015 to 2017 revealed that in China, the overall prevalence of diabetes among adults is 12.8%, including a newly diagnosed diabetes prevalence of 6.8% and a self-reported diabetes prevalence of 6.0% ( 3 – 6 ). The rising incidence of diabetes has led to an increased prevalence of the condition among young adults, and reports indicate that diabetes can manifest in individuals as young as 13 years old ( 7 , 8 ). The presence of concurrent complications such as hyperlipidemia, hypertension, and other conditions alongside diabetes has garnered increasing attention in terms of the onset, progression, outcomes, and management of diabetes. Diabetic complications are more common in macrovascular and microvascular diseases, and abnormal blood lipid metabolism is involved in the whole process of this disease. A randomized controlled trial study has demonstrated the intricate interplay between blood glucose and blood lipids in individuals with diabetes ( 9 – 11 ).

Given the rising incidence and prevalence of type 2 diabetes among children and adolescents, this issue may emerge as a significant public health concern impacting both developed and developing nations. Consequently, from a population standpoint, it is imperative to identify potential risk factors and identify susceptible groups that could benefit from screening and preventive measures ( 12 – 14 ). So far, scholars have explored the etiology of diabetes from various perspectives and directions, including pathology, genetics, genomics, social factors, and other fields. The formation of diabetes corresponds to abnormal birth weight ( 15 , 16 ). The occurrence of high birth weight infants, often stemming from fetal overnutrition, maternal diabetes, and other maternal health conditions, can significantly predispose individuals to obesity and diabetes in adulthood, typically around the age of 18. This association may be attributed to genetic polymorphisms and the onset of insulin resistance ( 17 ). Additionally, abnormal insulin secretion during the fetal period, impacting fetal growth and development, may contribute to the prevalence of infants with low birth weight (LBW) and heighten the risk of diabetes in adulthood ( 18 , 19 ).

At present, numerous investigations have explored the link between LBW and impaired glucose tolerance in children. However, these studies yield varying conclusions and employ designs, leading to poor applicability. The findings of a single study regarding the correlation between LBW and impaired glucose tolerance in children may lack conviction without robust scientific support. Therefore, additional research is warranted, necessitating reputable scientific studies to comprehensively evaluate this relationship. Consequently, a thorough, quantitative, and systematic meta-analysis of independent studies with similar objectives was conducted to investigate the association between LBW and impaired glucose tolerance in children. This analysis aims to provide valuable insights to inform further exploration of the underlying causes of type 2 diabetes and to enhance eugenic strategies.

2.1 Database and literature search

A computer-based search was carried out across multiple databases, including CochraneLibrary, ScienceDirect, EMBASE, Wanfang Database, the Chinese Biomedical Literature Data (CBM), VIP Full-text Database, China National Knowledge Infrastructure (CNKI). This extensive search strategy encompassed a wide range of sources, including both degree papers, conference papers, Chinese and foreign periodicals, news articles, and manual searches, among others.

The main aim was to collect pertinent data regarding the association between LBW and impaired glucose tolerance in children. The literature retrieval process utilized a combination of free-text and subject-specific keywords. Key search terms such as “newborn,” “low birth weight,” and “impaired glucose tolerance” were employed, with the search period spanning from January 2010 onwards. This comprehensive strategy aimed to encompass the latest and most relevant research findings in the field.

2.2 Inclusion criteria and exclusion criteria

2.2.1 criteria for include literature.

(1) Observational studies that were published in full-text format.

(2) Inclusion of newborns with birth weight of less than 1,500 g.

(3) Assessment of the correlation between LBW and impaired glucose tolerance in children.

(4) Adjustment or control for the potential confounding factors, with the reporting of relative risk factors or the comparison of blood glucose, insulin, and Model Assessment for Insulin Resistance (HOMA-IR) indices with those of normal newborns and high-birth-weight newborns. Based on a previous literature ( 20 ), children were classified into LBW (<2,500 g), normal birth weight (NBW; 2,500–3,999 g), and high birth weight (HBW; ≥4,000 g). Impaired glucose tolerance was defined as having 2-h plasma glucose concentration (2hPG) 140–199 mg/dl ( 21 ).

2.2.2 The literature exclusion criteria

(1) Studies with incomplete and unusable data.

(2) Duplicate research content, with preference given to the most recent study.

(3) Reviews, editorials, preclinical studies, and literature that did not directly relate to the special purpose of the current meta-analysis.

(4) Clinical cases, which were not considered in this particular meta-analysis.

2.3 Study selection and data extraction

The process of extracting data and screening books followed a rigorous and systematic approach.

2.3.1 Independent screening

Two researchers conducted separate reviews of the selected literature and extracted relevant information.

2.3.2 Quality evaluation

These researchers also assessed the quality of the included studies.

2.3.3 Cross-check

To ensure accuracy and consistency, the results of the independent screenings and data extractions were cross-checked. Any discrepancies were addressed through discussion and consensus. In instances of unresolved discrepancies, a third researcher was consulted to provide adjudication.

2.3.4 Software utilization

NoteExpress document management software and Excel office software were employed for data management and extraction, facilitating efficient organization and analysis of the research data.

2.3.5 Data completeness

In cases where the literature lacked necessary information, the authors of the respective articles were contacted to request Supplementary Data .

The information retrieved from the data comprised: (1) the authors’ names, the publishing year and the country of the institute; (2) the characteristics of the study design; (3) the characteristics of participants, including health status, sample size and average age; (4) the number of normal weight, overweight and LBW newborns; and (5) confounding factors adjusted or controlled when reporting correlations.

2.4 Qualitative assessment

For assessing the quality of observational studies in this meta-analysis, the Newcastle-Ottawa Scale (NOS) tool was utilized. Studies with a NOS score of ≥6 were categorized as medium to high quality, whereas those with an NOS score <6 were classified as low quality.

2.5 Statistical analysis

RevMan 5.3 software, derived from the Cochrane Collaboration, was used for conducting meta-analyses. The mean values, and standard deviations for Blood glucose levels, insulin levels, HOMA-IR in each group were input into RevMan 5.3 for analysis. The weighted mean difference (WMD) was used as the effect size, and 95% confidence intervals (CI) were calculated. Heterogeneity was evaluated using the χ 2 test and the I 2 statistic, which quantifies the total variation across studies attributed to heterogeneity. P -value below 0.05 was deemed statistically significant ( 22 , 23 ).

3 Results and analysis

3.1 the outcomes of literature retrieval and the fundamental circumstances behind literature inclusion.

In adherence to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines, the study initiated with a computer-based database search, resulting in the retrieval of 742 studies. After eliminating duplicate studies, 561 unique studies remained. These papers were then subject to preliminary screening, during which 308 studies were reviewed.

After the initial screening, 142 studies met the inclusion criteria for further assessment, while irrelevant studies, reviews, case reports, and uncontrolled documents were excluded. Subsequently, the full texts of the selected literature underwent thorough examination, with papers containing incomplete data or lacking key outcome indicators being excluded. Ultimately, the study integrated data from 10 clinical control studies, comprising a total of 2,971 samples. This meticulous selection process ensured that the included studies were pertinent, met the required criteria, and enhanced the robustness of the meta-analysis. Figure 1 illustrates the flow chart detailing the literature screening process, while Table 1 presents the fundamental characteristics identified in the literature.

www.frontiersin.org

Figure 1 . Illustration of literature screening.

www.frontiersin.org

Table 1 . Basic characteristics of literature.

3.2 An assessment of the study’s methodology’s quality

All the literatures described the detailed intervention methods and observation indicators, and all the literatures did not describe the quantity and causes of blind procedures, as well as missed follow-up or withdrawal, in detail. The NOS scale study indicated that low-quality literature had a score of <6, while high-quality literature had a score of ≥6 ( Table 2 ).

www.frontiersin.org

Table 2 . Literature quality.

3.3 Meta analysis result

3.3.1 blood glucose level.

The blood glucose levels of each group were examined using meta, and the heterogeneity test results revealed that LBW vs. NBW: Chi 2  = 25.86, I 2  = 85%, P  < 0.0001, df = 4; LBW vs. HBW: Chi 2  = 0.31, I 2  = 0%, P  = 0.58, df = 1. From the analysis shown as Figures 2 , 3 , there was no statistical difference in blood sugar levels between LBW infants and normal weight and overweight infants ( P  > 0.05).

www.frontiersin.org

Figure 2 . Comparison of blood glucose levels between normal weight and low birth weight children forest analysis chart F.

www.frontiersin.org

Figure 3 . Comparison of blood glucose levels between overweight and low birth weight children forest analysis map.

3.3.2 Insulin level

A meta-analysis of the comparative results of insulin levels was performed in each group. In the comparison between LBW and NBW, with four degrees of freedom, the Chi 2 statistic yielded a value of 6.85, resulting in a p -value of 0.14 and an I 2 of 42%. These findings indicate moderate heterogeneity among the studies for this comparison. In the comparison between LBW and HBW, the Chi-squared value was 11.78 with one degree of freedom, resulting in a p -value of 0.0006, and I 2 was determined to be 92%. These results indicate a high level of heterogeneity among the studies for this comparison. According to the analysis of the random-effect model ( Figure 4 ), there wasn't considerably difference in insulin level between LBW infants and normal weight children ( P  > 0.05).

www.frontiersin.org

Figure 4 . Comparison of insulin levels between normal weight and low birth weight children forest analysis map.

3.3.3 HOMA-IR

In the comparison between LBW and normal birth weight (NBW) children ( Figure 5 ), with four degrees of freedom, the Chi-squared statistic was 6.85, yielding a p -value of 0.14 and an I 2 of 42%, indicating a moderate level of heterogeneity among the studies.

www.frontiersin.org

Figure 5 . Forest analysis map of HOMA-IR comparison between normal weight and low birth weight children.

In the comparison of LBW with HBW children ( Figure 6 ), with one degree of freedom, the Chi-squared statistic was 11.78, yielding a p -value of 0.0006, and I 2 was determined to be 92%, suggesting a high level of heterogeneity among the studies for this comparison. The meta-analysis findings reveal that LBW infants have significantly higher HOMA-IR values when compared to NBW children ( P  < 0.05). Nonetheless, in comparing LBW to HBW children, the observed high level of heterogeneity underscores the need for caution in interpreting the results. This heterogeneity indicates significant variability among the included studies in this comparison, potentially influencing the overall findings.

www.frontiersin.org

Figure 6 . Forest analysis map of HOMA-IR comparison between overweight and low birth weight children.

3.3.4 Analysis of correlation between low birth weight and HOMA-IR

This study encompassed data from 10 clinical controlled studies, comprising a total of 2,971 samples, and conducted a meta-analysis on the association between LBW and HOMA-IR. The heterogeneity test results indicated significant heterogeneity, with Chi 2  = 912.67, df = 7, P  < 0.00001, and I 2  = 99%. These findings suggest a substantial level of variation among the included studies’ meta-analyses, assessed using a random effects model ( Figure 7 ), the risk of abnormal glucose tolerance in LBW newborns was 0.42 times higher than that in normal and overweight children [Fisher's Z  = 0.42,95% CI:0.09–0.75, P  = 0.01].

www.frontiersin.org

Figure 7 . Forest analysis map of the correlation between low birth weight and HOMA-IR.

3.3.5 Publication bias analysis

The funnel diagram was created using the blood glucose, insulin level, HOMA-IR value and correlation analysis results of each group, and an examination of publication bias was conducted ( Supplementary Figures S1–S4 ). The results revealed that while a small proportion of the included studies exhibited asymmetry, the majority of funnel plots appeared symmetrical, suggesting potential publication bias in the included literature. This bias could be linked to the heterogeneity observed in the study.

4 Analysis and discussion

Previous research has shown a link between diabetes and LBW ( 33 ). The “Fetal Origin hypothesis,” proposed in the 1990s, suggests that the conditions experienced during fetal intrauterine development significantly influence the risk of developing diseases in adulthood. According to this hypothesis, individuals born with LBW are at a considerably higher risk of developing type 2 diabetes later in life ( 34 ). Preterm delivery or intrauterine growth restriction is the most common cause of LBW ( 35 ). 63% of LBW infants are born prematurely, while the remaining cases are attributed to intrauterine dysplasia. It is noteworthy that nearly all very low birth weight infants are born prematurely, with some being extremely premature, with gestational ages of less than 25 weeks. In utero stunting of development in LBW infants impairs the development and function of the pancreas, leading to problems with lipid and glucose metabolism and hypertension in adulthood ( 36 , 37 ). Genetic research indicates that variations in susceptibility genes associated with type 2 diabetes may also be linked to LBW. This suggests a potential genetic predisposition for both lower birth weight and an increased risk of type 2 diabetes later in life. These findings underscore the intricate interplay between genetic factors and health outcomes across the lifespan ( 38 ). If an individual has a low birth weight or childhood weight, there is a tendency for rapid weight gain in adulthood (after 18 years of age) due to dietary changes, which significantly increases the risk of developing diabetes and other related metabolic disorders. Reduced birth weight has been associated with the upregulation of certain genes, commonly known as “thrift genes.” These genes might be involved in metabolic adaptations to prenatal undernutrition. Furthermore, there is evidence connecting LBW to a higher risk of developing several disorders, including diabetes, in adulthood, suggesting that early life factors, including birth weight, can influence gene expression and can aid in the later-life development of chronic illnesses.

Recently, LBW infants are prone to developing obesity, insulin resistance, hypertension, and vascular diseases in adulthood. Additionally, the incidence and mortality rates of other conditions such as enterocolitis, late-onset septicemia, and intraventricular hemorrhage are elevated in this population ( 39 ). The prevalence of diabetes and hypertension in LBW infants heightened significantly in adulthood. A survey has shown that the incidence of type 2 diabetes and birth weight are correlated in a U-shaped manner, and the quantity of diabetes cases complicated with hypertension in LBW is significantly increased. Diabetes is also associated with high birth weight, while hypertension is notably more prevalent among high birth weight infants. It is hypothesized that hypertension in high birth weight infants and LBW infants may arise from distinct metabolic phenotypes or similar environmental factors. Moreover, LBW infants exhibit a significantly higher prevalence of hyperlipidemia compared to those with normal birth weight ( 40 ). Previous study has found that 300 cases of high birth weight infants, and the results show the detection rates of overweight and obesity in the macrosomia group (13.10% vs. 2.86%) are higher than those in the control group (9.69% vs. 1.61%) ( 41 ), which suggested that the risk of insulin resistance and abnormal lipid metabolism in abnormal birth weight infants is greater than that in normal birth weight infants. China's Chinese multi-provincial Study on Risk Factors of Cardiovascular Diseases (CMCS) has suggested that the proportion of diabetic patients with abnormal blood lipid metabolism is considerably higher, and the proportion of diabetic patients with atherosclerosis risk factors such as coronary heart disease, cerebral infarction and venous thrombosis is also significantly higher than that of non-diabetic patients.

More and more evidence shows that the LBW of newborns is directly related to the abnormal glucose tolerance of children. The blood sugar and insulin levels of LBW newborns, normal newborns and overweight newborns were analyzed by meta-analysis. The findings indicated that there was not a significant variation between the blood sugar levels of LBW newborns and overweight and normal newborns. Meta-analysis of the comparison results of HOMA-RI values in each group showed that the HOMA-IR values of LBW infants were considerably higher. It is suggested that there is a certain correlation between LBW of newborns and HOMA-IR. Meta-analysis was made on the correlation between LBW and HOMA-IR, and random effect model analysis showed the risk of abnormal glucose tolerance in LBW newborns was 0.42 times higher than that in normal and overweight children [Fisher's SZ = 0.42, P  = 0.01, 95%CI = (0.09, 0.75)]. Through an analysis of existing research in this domain, it is evident that there exists a connection between abnormal glucose tolerance and atypical birth weight in LBW infants. This association cannot be solely attributed to factors related to the fetus itself, prenatal malnutrition, or the intrauterine environment; rather, it encompasses various other contributing factors. These factors encompass aspects related to the pregnant woman's health, as well as lifestyle choices and dietary habits during adulthood. Additionally, genetic modifications resulting from certain factors in adulthood may also influence this intricate relationship. Understanding these multifaceted connections is crucial for comprehensively addressing and managing health risks associated with abnormal glucose tolerance and birth weight.

However, the study has certain limitations that warrant consideration:

(1) Stringent Criteria for Inclusion and Exclusion: The study employed rigorous criteria for inclusion and exclusion, leading to a relatively small number of included studies. Furthermore, detailed subgroup analysis was not conducted on studies displaying heterogeneity. This limited the diversity of the included literature and may affect the generalizability of the findings.

(2) Inconsistent Treatment Protocols and Outcome Measures: Variability in the treatment protocols and outcome indicators across the included studies may introduce heterogeneity and impact the reliability of the outcomes.For example, insulin level is influenced by age and gender ( 42 ). Therefore, these factors may influence the results in this study. To bolster the robustness of the findings, it is imperative to conduct further research, encompassing high-quality correlation studies and case-control trials. These endeavors will provide a deeper understanding of the relationship between abnormal glucose tolerance and birth weight, thus advancing our knowledge in this critical area of study.

5 Conclusion

It has been shown that LBW in babies is associated with poor glucose tolerance in pediatric population and a higher chance of type 2 diabetes in adults. This underscores the significance of preventive measures to manage birth weight abnormalities.Highlighting the significance of dietary and exercise management during the perinatal and developmental stages is crucial for mitigating the risk of diabetes. These insights underscore the necessity of early interventions and a comprehensive healthcare approach to mitigate the enduring adverse impacts of low birth weight on health outcomes.

Data availability statement

The datasets used and analyzed during the current study available from the corresponding author on reasonable request.

Author contributions

JM: Data curation, Formal Analysis, Writing – original draft. YW: Conceptualization, Writing – review & editing. MM: Data curation, Methodology, Writing – original draft. ZL: Conceptualization, Formal Analysis, Methodology, Writing – original draft.

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped.2024.1362076/full#supplementary-material

Supplementary Figure S1 Funnel chart based on blood glucose level. Note: ( A ) Comparison between LBW and DBW; ( B ) LBW compared with HBW.

Supplementary Figure S2 Funnel chart based on insulin level.

Supplementary Figure S3 Funnel diagram based on HOMA-IR. Note: ( C ) LBW compared with DBW; ( D ) LBW compared with HBW.

Supplementary Figure S4 Funnel chart based on the results of correlation analysis.

1. Champion ML, Battarbee AN, Biggio JR, Casey BM, Harper LM. Postpartum glucose intolerance following early gestational diabetes mellitus. Am J Obstet Gynecol MFM . (2022) 4(3):100609. doi: 10.1016/j.ajogmf.2022.100609

PubMed Abstract | Crossref Full Text | Google Scholar

2. Ueki K, Sasako T, Okazaki Y, Miyake K, Nangaku M, Ohashi Y, et al. Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes. Kidney Int . (2021) 99(1):256–66. doi: 10.1016/j.kint.2020.08.012

3. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: national cross sectional study. BMJ . (2020) 369:m997. doi: 10.1136/bmj.m997

4. Li W, Zhang H, Chen Z, Tao Y, Huang X, Chen W, et al. MiRNA-92a-3p mediated the association between occupational noise exposure and blood pressure among Chinese adults. Sci Total Environ . (2024) 907:168148. doi: 10.1016/j.scitotenv.2023.168148

5. Jinyi W, Zhang Y, Wang K, Peng P. Global, regional, and national mortality of tuberculosis attributable to alcohol and tobacco from 1990 to 2019: a modelling study based on the global burden of disease study 2019. J Glob Health . (2024) 14:04023. doi: 10.7189/jogh.14.04023

6. Zhang Y, Wang K, Zhu J, Wu J. A network suspected infectious disease model for the development of syphilis transmission from 2015 to 2021 in Hubei province, China. J Appl Microbiol . (2023) 134(12):lxad311. doi: 10.1093/jambio/lxad311

7. Yajnik CS, Bandopadhyay S, Bhalerao A, Bhat DS, Phatak SB, Wagh RH, et al. Poor in utero growth, and reduced β -cell compensation and high fasting glucose from childhood, are harbingers of glucose intolerance in young Indians. Diabetes Care . (2021) 44(12):2747–57. doi: 10.2337/dc20-3026

8. Green JB, Mottl AK, Bakris G, Heerspink HJL, Mann JFE, McGill JB, et al. Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using a UACR endpoint study (CONFIDENCE). Nephrol Dial Transplant . (2023) 38(4):894–903. doi: 10.1093/ndt/gfac198

9. Subramanian SC, Porkodi A, Akila P. Effectiveness of nurse-led intervention on self-management, self-efficacy and blood glucose level among patients with type 2 diabetes mellitus. J Complement Integr Med . (2020) 17(3). doi: 10.1515/jcim-2019-0064

10. Wu J, Wang K, Tao F, Li Q, Luo X, Xia F. The association of blood metals with latent tuberculosis infection among adults and adolescents. Front Nutr . (2023) 10:1259902. doi: 10.3389/fnut.2023.1259902

11. Wang K, Xia F, Li Q, Luo X, Wu J. The associations of weekend warrior activity patterns with the visceral adiposity index in US adults: repeated cross-sectional study. JMIR Public Health Surveill . (2023) 9:e41973. doi: 10.2196/41973

12. Li W, Feng X, Zhang H, Wang YX, Zeng Q, Liu C, et al. Association of shift work with oxidative stress and alteration of fasting plasma glucose level in Chinese adults. Obesity (Silver Spring) . (2023) 31(10):2505–14. doi: 10.1002/oby.23845

13. Li W, Chen D, Peng Y, Lu Z, Wang D. Association of polycyclic aromatic hydrocarbons with systemic inflammation and metabolic syndrome and its components. Obesity (Silver Spring) . (2023) 31(5):1392–401. doi: 10.1002/oby.23691

14. Li W, Chen D, Tao Y, Lu Z, Wang D. Association between triglyceride-glucose index and carotid atherosclerosis detected by ultrasonography. Cardiovasc Diabetol . (2022) 21(1):137. doi: 10.1186/s12933-022-01570-0

15. Bianco ME, Kuang A, Josefson JL, Catalano PM, Dyer AR, Lowe LP, et al. Hyperglycemia and adverse pregnancy outcome follow-up study: newborn anthropometrics and childhood glucose metabolism. Diabetologia . (2021) 64(3):561–70. doi: 10.1007/s00125-020-05331-0

16. Cherney DZI, Charbonnel B, Cosentino F, Dagogo-Jack S, McGuire DK, Pratley R, et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia . (2021) 64(6):1256–67. doi: 10.1007/s00125-021-05407-5

17. Kumbhojkar A, Saraff V, Nightingale P, Högler W. Glycated haemoglobin as a screening test for abnormal glucose homeostasis in childhood obesity. Diabet Med . (2020) 37(2):356–61. doi: 10.1111/dme.14192

18. Soh J F, Beaulieu S, Trepiccione F, Linnaranta O, Torres-Platas G, Platt RW, et al. A double-blind, randomized, placebo-controlled pilot trial of atorvastatin for nephrogenic diabetes insipidus in lithium users. Bipolar Disord . (2021) 23(1):66–75. doi: 10.1111/bdi.12973

19. Pop-Busui R, Braffett BH, Wessells H, Herman WH, Martin CL, Jacobson AM, et al. Diabetic peripheral neuropathy and urological complications in type 1 diabetes: findings from the epidemiology of diabetes interventions and complications study. Diabet Care . (2022) 45(1):119–26. doi: 10.2337/dc21-1276

Crossref Full Text | Google Scholar

20. Ledo DL, Suano-Souza FI, Franco M, Strufaldi MWL. Body mass index and cardiovascular risk factors in children and adolescents with high birth weight. Ann Nutr Metab . (2018) 72(4):272–8. doi: 10.1159/000488595

21. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabet Care . (2018) 41(Suppl. 1):S13–s27. doi: 10.2337/dc18-S002

22. Li W, Chen D, Ruan W, Peng Y, Lu Z, Wang D. Association of polycyclic aromatic hydrocarbons exposure, systemic inflammation with hearing loss among adults and adolescents. Environ Pollut . (2022) 296:118772. doi: 10.1016/j.envpol.2021.118772

23. Zheng X, Shi J, Wu J. Analysis of factors and corresponding interactions influencing clinical management assistant ability using competency model in China. Medicine (Baltimore) . (2020) 99(51):e23516. doi: 10.1097/MD.0000000000023516

24. Oliveira-Santos J, Santos R, Moreira C, Abreu S, Lopes L, Agostinis-Sobrinho C, et al. Associations between anthropometric indicators in early life and low-grade inflammation, insulin resistance and lipid profile in adolescence. Nutr Metab Cardiovasc Dis . (2019) 29(8):783–92. doi: 10.1016/j.numecd.2019.05.052

25. de Jong M, Cranendonk A, van Weissenbruch MM. Components of the metabolic syndrome in early childhood in very-low-birth-weight infants and term small and appropriate for gestational age infants. Pediatr Res . (2015) 78(4):457–61. doi: 10.1038/pr.2015.118

26. Domínguez Hernández C, Klünder Klünder M, Huang F, Flores Armas EM, Velázquez-López L, Medina-Bravo P. Association between abdominal fat distribution, adipocytokines and metabolic alterations in obese low-birth-weight children. Pediatr Obes . (2016) 11(4):285–91. doi: 10.1111/ijpo.12060

27. dos Santos Alves PJ, PTH AC, Pinto LR, SM RM, MA CH, Alves RS, et al. Endothelial and metabolic disorders in adolescence: low birth weight is not an isolated risk factor. J Pediatr Endocrinol Metab . (2015) 28(3-4):407–13. doi: 10.1515/jpem-2014-0146

28. Mori M, Mori H, Yamori Y, Tsuda K. Low birth weight as cardiometabolic risk in Japanese high school girls. J Am Coll Nutr . (2012) 31(1):39–44. doi: 10.1080/07315724.2012.10720007

29. Guerrero-Romero F, Aradillas-García C, Simental-Mendia LE, Monreal-Escalante E, de la Cruz Mendoza E, Rodríguez-Moran M. Birth weight, family history of diabetes, and metabolic syndrome in children and adolescents. J Pediatr . (2010) 156(5):719–23. 23.e1. doi: 10.1016/j.jpeds.2009.11.043

30. Huang Y, Li Y, Chen Q, Chen H, Ma H, Su Z, et al. Low serum adiponectin levels are associated with reduced insulin sensitivity and lipid disturbances in short children born small for gestational age. Clin Endocrinol (Oxf) . (2015) 83(1):78–84. doi: 10.1111/cen.12663

31. Sebastiani G, Díaz M, Bassols J, Aragonés G, López-Bermejo A, de Zegher F, et al. The sequence of prenatal growth restraint and post-natal catch-up growth leads to a thicker intima-media and more pre-peritoneal and hepatic fat by age 3–6 years. Pediatr Obes . (2016) 11(4):251–7. doi: 10.1111/ijpo.12053

32. Blusková Z, Koštálová L, Celec P, Vitáriušová E, Pribilincová Z, Maršálková M, et al. Evaluation of lipid and glucose metabolism and cortisol and thyroid hormone levels in obese appropriate for gestational age (AGA) born and non-obese small for gestational age (SGA) born prepubertal Slovak children. J Pediatr Endocrinol Metab . (2014) 27(7-8):693–9. doi: 10.1515/jpem-2013-0334

33. Suzuki Y, Kido J, Matsumoto S, Shimizu K, Nakamura K. Associations among amino acid, lipid, and glucose metabolic profiles in childhood obesity. BMC Pediatr . (2019) 19(1):273. doi: 10.1186/s12887-019-1647-8

34. Chuar PF, Ng YT, Phang SCW, Koay YY, Ho JI, Ho LS, et al. Tocotrienol-rich vitamin E (tocovid) improved nerve conduction velocity in type 2 diabetes mellitus patients in a phase II double-blind, randomized controlled clinical trial. Nutrients . (2021) 13(11):3770. doi: 10.3390/nu13113770

35. Zohdi V, Sutherland MR, Lim K, Gubhaju L, Zimanyi MA, Black MJ. Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on nephron number and long-term renal health. Int J Nephrol . (2012) 2012:136942. doi: 10.1155/2012/136942

36. Mehrzadi S, Mirzaei R, Heydari M, Sasani M, Yaqoobvand B, Huseini HF. Efficacy and safety of a traditional herbal combination in patients with type II diabetes mellitus: a randomized controlled trial. J Diet Suppl . (2021) 18(1):31–43. doi: 10.1080/19390211.2020.1727076

37. Schmitt A, Kulzer B, Reimer A, Herder C, Roden M, Haak T, et al. Evaluation of a stepped care approach to manage depression and diabetes distress in patients with type 1 diabetes and type 2 diabetes: results of a randomized controlled trial (ECCE HOMO study). Psychother Psychosom . (2022) 91(2):107–22. doi: 10.1159/000520319

38. Maddaloni E, Coleman RL, Agbaje O, Buzzetti R, Holman RR. Time-varying risk of microvascular complications in latent autoimmune diabetes of adulthood compared with type 2 diabetes in adults: a post-hoc analysis of the UK prospective diabetes study 30-year follow-up data (UKPDS 86). Lancet Diab Endocrinol . (2020) 8(3):206–15. doi: 10.1016/S2213-8587(20)30003-6

39. Hainsworth DP, Gao X, Bebu I, Das A, de Koo L O, Barkmeier AJ, et al. Refractive error and retinopathy outcomes in type 1 diabetes: the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Ophthalmology . (2021) 128(4):554–60. doi: 10.1016/j.ophtha.2020.09.014

40. Kurnikowski A, Nordheim E, Schwaiger E, Krenn S, Harreiter J, Kautzky-Willer A, et al. Criteria for prediabetes and posttransplant diabetes mellitus after kidney transplantation: a 2-year diagnostic accuracy study of participants from a randomized controlled trial. Am J Transplant . (2022) 22(12):2880–91. doi: 10.1111/ajt.17187

41. Koundal H, Dhandapani M, Thakur P, Dutta P, Walia R, Sahoo SK, et al. Effectiveness of dietary diabetes insipidus bundle on the severity of postoperative fluid imbalance in pituitary region tumours: a randomized controlled trial. J Adv Nurs . (2021) 77(9):3911–20. doi: 10.1111/jan.14894

42. Wiegand S, Raile K, Reinehr T, Hofer S, Näke A, Rabl W, et al. Daily insulin requirement of children and adolescents with type 1 diabetes: effect of age, gender, body mass index and mode of therapy. Eur J Endocrinol . (2008) 158(4):543–9. doi: 10.1530/EJE-07-0904

Keywords: newborn, low birth weight, abnormal glucose tolerance, diabetes, meta-analysis

Citation: Ma J, Wang Y, Mo M and Lian Z (2024) Association between low birth weight and impaired glucose tolerance in children: a systematic review and meta-analysis. Front. Pediatr. 12:1362076. doi: 10.3389/fped.2024.1362076

Received: 27 December 2023; Accepted: 23 April 2024; Published: 9 May 2024.

Reviewed by:

© 2024 Ma, Wang, Mo and Lian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Zerong Lian [email protected]

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Mapping the field of behavioural biases: a literature review using bibliometric analysis

Profile image of Esha Jain

Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the-art and identifies significant gaps in the existing literature on behavioural biases. Through keyword and reference searching approaches, the study retrieved 212 research papers from the Scopus database. Application of performance analysis techniques has helped in identification of influential journals, prolific authors, countries and affiliations enriching the literature on behavioural biases. Scientific mapping approaches such as bibliographic coupling and thematic mapping has provided valuable insights about the conceptual and intellectual structure of the field. Finally, the research directions proposed in this review will pr...

Related Papers

IAEME Publication

The objective of this paper is to study and describe various biases in investment decision-making through the review of research papers in the area of behavioral finance. This research paper describes various behavioral patterns of investors. For writing this paper, research papers have been collected over a period of year’s right from the time when the most introductory paper was published (1974) till the most recent papers (2019). These research papers are segregated on the basis of biases. This study is more focused towards the study of individual investors. This study has identified 7 various types of biases. This study is also based on some of the most recent research work to have a quick overview of the latest work carried out in this area. Practical implications of the research is that individual investors, investment advisers , students and other institutions in this area can get inputs from this research. The unique aspect of this paper is that this paper not only pays attention on basic principles of behavioral finance but also describes some emerging concepts of behavioral finance. Thus, the paper creates interest in the readers to find the solutions to minimize the effect of biases in decision-making.

literature review and behavioural analysis

Innovative Publication

IP Innovative Publication Pvt. Ltd.

In present day behavioral finances play the important role for the investment decision making. In present day the investor's take the variety of the decision. There are various option or choice available for the investors in the market while taking investment decisions. Decision making means final selection n of the best alternative which are available for the investors in the market some investment decision are easy and other investment decision are the complex and require the multiple approach. This study is evaluate the and identify the behavioral biases involve in the investors decision making while taking investment decision and also identify the impact of the behavioral biases involve in the decision making. Behavioral biases generally variation in the judgments that occur in the particular situation which lead to irrational decision inaccurate decision. These studies focus the some of the behavioral biases which affect the investment decision for the investors.

International Journal of Academic Research in Business and Social Sciences

NELSON LAJUNI

IJAR Indexing

Research has proved that investors in the equity market are not consistently rational. Emotions influence their decision making process in the complex environment of equity market, in the form of behavioral biases. This paper reviews five important behavioral biases exhibited by investors in the equity market. The behavioral biases reviewed include, representativeness, anchoring, gambler?s fallacy, availability and optimism. The literature available for each of the biases is reviewed and hence this paper draws attention to a new dimension in finance.

Journal of academic social resources (asrjournal)

International Business Research

Prince Gyimah

This paper examines the nexus between behavioural bias and investment decisions in a developing country context. Specifically, this study tests the effect of four behavioural biases (overconfidence, regret, belief, and “snakebite”) on investment decisions. Descriptive statistics and inferential statistics including multiple regression are used to examine the behavioural biases-investment decisions nexus. The study reveals that the four bias have a significant positive and robust relationship with investment decision making. The result also shows that the &quot;snakebite&quot; effect contributes more to the decision making, followed by belief bias then regret bias. Overconfidence bias, however, contributes the least effect on investment decisions. Our contribution confirms the prospect theory and that behavioural bias influences investment decisions in the developing country perspective.

DeBondt, W.F.M. and Thaler, R.H. (1995), “Financial decision making in markets and firms: a behavioral perspective”,Handbooks inOperations Research and Management Science, Vol. 9 No. 13, pp. 385-410.

Asif Ali 8221-FMS/MBA/F19

Purpose-This paper aims to review the theory and empirical evidence of institutional investor behavioral biases in the lenses of behavioral finance paradigm. It surveys the research specifically focusing on behavioral biases among institutional investors in investment management activities worldwide. Design/methodology/approach-A literature survey is done to gather and synthesize evidence on behavioral biases of institutional investors. Findings-The survey and analysis reveal the following findings. First, the theoretical underpinning of investors' irrational behavior has been neglected in behavioral finance research. Second, the behavioral heuristics and biases are dynamic and complex. Third, understanding behavioral biases' origin, causes and effects requires interdisciplinary perspectives from the fields of psychology, sociology and biology. Originality/value-The analysis and alternative perspectives drawn in this paper provide new insights into the field of behavioral finance and aims to suggest researchers, practitioners and regulators on the next course of actions.

International Journal of Accounting, Finance and Risk Management

atif sattar

Journal of Banking

Abudu Kasimu , IFUERO OSAMWONYI

Abstract This paper considers investment behaviour in the Nigerian stock market with particular reference to the Cumulative Prospect Theory. As an exploratory study a small sample set is surveyed using structured questionnaires; the study examined various investors’ characteristics that can influence investor’s behaviour in the stock market. Cross tabulation, descriptive statistics, correlation matrix and Chi-square are employed for data analysis. From the analysis, the study finds that investment behaviour in the Nigerian stock market is consistent with the prediction of the Cumulative Prospect Theory. Individuals are risk – averse over gains and risk – seeking over losses, and that they tend to overweight low – probability events while underweighting the likelihood of high – probability ones. The study identifies some behavioural bias factors such as feelings, news of loss, and crowd influence as important. The study tends to suggest that the major participants in the Nigerian financial markets should design products and strategies that will cover

IAEME PUBLICATION

Baseline Data on Global Research Activity on Psychology and Investment Finance Needs to be Assessed and Analyzed to Identify Research Gaps and to Prioritize Funding and Research Agendas. Therefore, This Study is a Method to Provide a Systematic and Holistic Review of Bibliometric Analysis Academic Literature Related To Behavioural Financial (Bf). Foster Development of Work into Coordinated Efforts, It is Necessary to Understand Interesting Topics and Expand Collaborative Networks. Our Objective was to Assess Global Research Patterns in the Bf Field Focused on Publishing Outcomes, Co-Authorships Between Authors and Similar Countries and Co-Occurrences of Keywords Usage of the Scopus Database. A Total of 967 BfRelated Publications were Published from Different Journals from 2009 to 2019. Review of Co-Citation Established Behavioural Financial as the Main Theoretical Basis of Business Investment Analysis. After that, The Study used a Co-Word Review to Assess Over Time the Creation of Field Research Topics. The Research of the Bf Highlighted Similarities, Including The Growth of Research Over Time, The Growing Popularity of the Term "Bf," and Research-Focused Management Applications. Lastly, The Study Called for a Future Research Program on the State of Mind of the Investor and Emerging Market on Bf Studies

RELATED PAPERS

Ciencia Animal Brasileira

Paulo Cecon

Thomas Maldonado

Building and Environment

Dušan Petráš

Landas Journal of Loyola School of Theology

James Kroeger

Tamiji Yamamoto

Israela Berdicevsky

Chemical Engineering & Technology

Physical Review B

Liliana Arrachea

Hipatia Press

Steve Lambert

etic susilawati

Metallurgica Anatolica. Festschrift für Ünsal Yalçın

Christof Berns

Elbert E. N. Macau

Revista Científica Multidisciplinar Núcleo do Conhecimento

Rosimeire Barbosa Fonseca Guastaldi

Christiana Aruwa

Journal of paramedical sciences

Hippocampus

Journal of Education

Luvy Zanthy

Derecho y Cambio Social

Juan Carlos Garcia Huayama

European heart journal

Gurpreet Singh

Pan African Medical Journal

Higgs Boson

Wahyu Msbaba

Nikita Umoafia

Medrar para sobrevivir. Individualidades presas en la fragua de la historia. Siglos XVIXIX, (Thomas Calvo y J. Armando Hernández Soubervielle, coordinadores), El Colegio de San Luis / El Colegio de Michoacán, 2016

José Armando Hernández Soubervielle

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Search Menu
  • Advance articles
  • Editor's Choice
  • Supplement Archive
  • Article Collection Archive
  • Author Guidelines
  • Submission Site
  • Open Access
  • Call for Papers
  • Why Publish?
  • About Nutrition Reviews
  • About International Life Sciences Institute
  • Editorial Board
  • Early Career Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Journals on Oxford Academic
  • Books on Oxford Academic

Article Contents

Introduction, acknowledgments, supporting information, mapping the evidence of novel plant-based foods: a systematic review of nutritional, health, and environmental impacts in high-income countries.

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Sarah Nájera Espinosa, Genevieve Hadida, Anne Jelmar Sietsma, Carmelia Alae-Carew, Grace Turner, Rosemary Green, Silvia Pastorino, Roberto Picetti, Pauline Scheelbeek, Mapping the evidence of novel plant-based foods: a systematic review of nutritional, health, and environmental impacts in high-income countries, Nutrition Reviews , 2024;, nuae031, https://doi.org/10.1093/nutrit/nuae031

  • Permissions Icon Permissions

Shifting from current dietary patterns to diets rich in plant-based (PB) foods and lower in animal-based foods (ABFs) is generally regarded as a suitable strategy to improve nutritional health and reduce environmental impacts. Despite the recent growth in supply of and demand for novel plant-based foods (NPBFs), a comprehensive overview is lacking.

This review provides a synthesis of available evidence, highlights challenges, and informs public health and environmental strategies for purposeful political decision-making by systematically searching, analyzing, and summarizing the available literature.

Five peer-reviewed databases and grey literature sources were rigorously searched for publications.

Study characteristics meeting the inclusion criteria regarding NPBF nutrient composition and health and environmental outcomes in high-income countries were extracted.

Fifty-seven peer-reviewed and 36 grey literature sources were identified; these were published in 2016–2022. NPBFs typically have substantially lower environmental impacts than ABFs, but the nutritional contents are complex and vary considerably across brands, product type, and main primary ingredient. In the limited evidence on the health impacts, shifts from ABFs to PB meats were associated with positive health outcomes. However, results were mixed for PB drinks, with links to micronutrient deficiencies.

If carefully selected, certain NPBFs have the potential to be healthier and nutrient-rich alternatives to ABFs and typically have smaller environmental footprints. More disaggregated categorization of various types of NPBFs would be a helpful step in guiding consumers and key stakeholders to make informed decisions. To enable informed policymaking on the inclusion of NPBFs in dietary transitions as part of a wider net-zero and health strategy, future priorities should include nutritional food standards, labelling, and subdivisions or categorizations of NPBFs, as well as short- and long-term health studies evaluating dietary shifts from ABFs to NPBFs and standardized environmental impact assessments, ideally from independent funders.

The fragile interconnection between food systems and the environment is increasingly evident. 1–3 While current agricultural practices are damaging the environment, environmental change is putting food supplies at risk of disruption if timely adaptation strategies are not used. 4–8 This relationship exists at a time when food systems are already struggling to provide healthy diets for all, with many populations experiencing a coexistence of undernutrition and obesity. 1 , 3

Structural changes in food systems are critical to both safeguard people’s health and accomplish the climate adaptation and mitigation commitments mentioned in The United Nations Framework Convention on Climate Change 9 and the United Nations’ Sustainable Development Goals. 10 While production-side strategies can contribute toward climate mitigation, substantial opportunities for further emission reductions and acceleration toward net-zero targets can be achieved through dietary changes and the resulting lower demand for foods with a large environmental footprint.

In food-secure and high-income settings, a shift from “conventional diets” (which typically contain high amounts of animal-based foods [ABFs]) to predominantly plant-based (PB) diets could improve population and planetary health. 2 , 11 Dietary change has many obstacles, with diets influenced by many factors 12 , 13 that act as barriers to increasing consumption of minimally processed PB foods (eg, legumes, vegetables). If common barriers are removed, such as the need for additional cooking skills, major changes in taste and appearance of commonly consumed dishes, and fear of social stigma, 14 , 15 novel plant-based foods (NPBFs), products designed to mimic and replace ABFs to allow easy incorporation into habitual diets (eg, vegan and vegetarian meat and dairy) (see Box 1 ), may offer an easier option to facilitate this shift.

In recent years, the NPBF landscape has expanded rapidly. Several new types of NPBFs (eg, PB drinks, yogurts, eggs, meats) were introduced to the market, and trends showed increasing sales, volume, and investment growth across many countries. 16–21 In 2023, data suggested a possible slowdown, especially for PB meats, with some consumers criticizing their cost and taste, 22 and some NPBF manufacturers reporting net losses. 23 , 24 However, sales of supermarkets’ own-label PB meat alternatives have seen growth, 23 alongside consistent increases in sales of PB dairy and eggs 25 (see Supplementary file 1, section 1.1, in the Supporting Information online for detailed information on costs).

According to a global survey focusing on individuals following vegan or vegetarian diets most or all of the time, 22.0% of consumers reported adhering to a meat-free diet, and there is growing interest in embracing PB eating, with approximately 42.0% of consumers anticipating that PB foods will replace most meat within a decade. 26 With consumption of NPBFs in the United Kingdom doubling between 2008 and 2019, particularly among women and younger generations, and the fact that in 2022, 60.0% of US households purchased at least 1 type of NPBF, verification of any health and sustainability claims in marketed products is of vital importance. 22 , 27 , 28 Currently, various NPBFs are advertised as potential dietary “game changers,” with claims that they would play an important and positive role in sustainability and health, 29 , 30 and, thus, could play a pivotal role in the so-called consumption corridors. 31 However, because of their novelty, some consumers question these positive claims. 32 Although NPBFs are generally regarded as a low-carbon alternative to ABFs, their nutrient and health profiles remain largely unknown and are often criticized. This is primarily related to concerns regarding micronutrient and protein content, along with higher content of saturated fats and sodium in comparison to ABFs, and level of processing. 33 , 34

Previous reviews have primarily focused on single aspects of NPBFs 17 , 19 , 22 , 25 , 29 , 34–46 or ingredients of NPBFs 39 , 47–50 ; a few recent reviews explored the positive health and environmental outcomes of consuming selected NPBFs. 51–53 However, research quantifying the potential impacts of NPBFs is still in its infancy, and an overview that is both systematic and comprehensive, comprising health, nutrient, and environmental outcomes from peer-reviewed and grey literature of different types of NPBFs, does not yet exist, to our knowledge. This lack makes it difficult for policy makers and consumers to assess the trade-offs between nutrient composition and the environmental and health impacts of NPBFs, and hinders the potential inclusion of NPBFs in sustainable and healthy dietary recommendations.

To synthesize available evidence, highlight challenges, inform public health and environmental strategies, and inform purposeful political decision-making, we aimed, in this study, to systematically search, analyze, and summarize the available grey and peer-reviewed literature on the nutrient composition, environmental footprints, and health effects of NPBFs sold and consumed in high-income countries, and to quantify and summarize their reported results.

The full-study protocol we followed is published elsewhere (see Nájera Espinosa et al 54 and Supplementary file 1, section 2, in the Supporting Information online for more details on the methods). Briefly, a systematic search was performed to identify peer-reviewed journal articles and grey literature that contained data on the nutrient composition, health impacts, and environmental impacts of NPBFs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. 55

Peer-reviewed literature

Five scientific databases were systematically searched (MEDLINE, Embase, Global Health, GreenFILE, and the Web of Science Core Collection) on August 29, 2021; we conducted an updated search on June 29, 2022. The search was limited to articles published and accepted after January 2016 until June 29, 2022, because of the substantial growth in supply and demand of NPBFs in the past 7 years. 16–19 In addition to database searching, citation lists from identified systematic literature reviews were handsearched (see Supplementary file 1, section 2.6, in the Supporting Information online for the full search strategy). After the quality criteria were applied (described in Supplementary file 1 , Table S1 in the Supporting Information online ), titles were manually and triple screened. Abstracts were manually double screened after application of a supervised machine-learning algorithm (ie, a support vector machine 56 ) through Scikit Learn 57 that ranked and highlighted likely relevant articles (ie, conducted priority screening). This approach is described elsewhere in detail (see Supplementary file 1, section 2.1, in the Supporting Information online ). 58 Full texts were manually screened by 2 authors and data were also double extracted.

Grey literature

To capture grey literature in a systematic way, a manual search was conducted on Google (see Supplementary file 1, section 2.3 , and Table S3 in the Supporting Information online ). Text from the webpages was then scraped and a state-of-the-art, pretrained language model from Hugging Face 59 was used to create a summary of each web link. Results were exported into a comma-separated value, or CSV, file. Additionally, a manual search in Google of relevant websites from the top NPBF producers in the United Kingdom and United States was conducted. 60–63 And literature from relevant websites that promote NPBFs, such as the Good Food Institute and Green Queen, were searched and screened manually (see Supplementary file 1, section 2.3 , and Tables S4 and S5 in the Supporting Information online ).

Data analysis, categorization, and key definitions: nutrient, health, and environmental outcomes

The PICO (population, intervention, comparison, and outcome) criteria are defined in Table 1 (see Supplementary file 1, Table S1 in the Supporting Information online for a detailed list of the inclusion and exclusion criteria). Main study characteristics and nutrient, health, and environmental outcomes were extracted (see Supplementary files 1 and 3 in the Supporting Information online for more details).

PICO criteria for inclusion of studies

PB drinks and milk reported in 100 ml of product.

NPBFs and their ABF counterparts were categorized into food groups on the basis of their primary ingredient ( Table 2 ). See Supplementary file 1, sections 2.4 and 2.5, in the Supporting Information online for more details on the selection of nutrients, data analysis assumptions, and ABF baseline comparators). The following terms for each NPBF type are used in this review:

Food groups for novel plant-based foods and animal-based foods and their respective reported main primary ingredient

For the purposes of this review, peanuts were included in the Nuts and Seeds group because they are typically consumed as such.

Blended or mixed products, if reported, the first ingredient was taken as the primary ingredient. For example, soy & almond PB drinks were labelled as legumes.

If a product did not report any ingredients, they were categorised as unknown.

PB meat products or alternatives: include different types of PB meats (eg, PB chicken, sausages, mincemeat), categories (eg, mycoprotein, legumes), and brands

PB drink products or alternatives: include different PB drink categories (eg, legumes, nuts, seeds) and brands

PB yogurt products or alternatives: include different PB yogurt categories (eg, legumes, coconut) and brands

PB cheese products or alternatives: include different types of PB cheese categories (eg, coconut, nuts, seeds) and brands

PB egg products or alternatives: include different types of PB egg categories and brands

Mention of PB products (without further specification) refers to all the listed product subcategories mentioned, except for PB eggs.

Assessment of robustness and relevance

A modified version of the Critical Appraisal Skills Program checklist for randomized controlled trials 64 was adapted to assess robustness and relevance of the studies in the full-text reviewing stage. The modifications involved the exclusion of the randomization, blinding, and cost-effectiveness criteria on the Critical Appraisal Skills Program checklist, and funding source was added as a criterion. Studies were assessed by 4 reviewers (G.H., R.P., S.P., and S.N.E.). Studies were assessed as follows: (1) clear description of the study design, (2) appropriate comparison group, (3) clear description of the methods, (4) rigorous and clearly described analysis, (5) funding source, and (6) precision of measure of effect. Studies with a minimum score of 1 were included, and sensitivity analysis was performed by funding source (see Supplementary file 1, section 2.2, in the Supporting Information online for more details).

Fruit, vegetable, legume, and nut content in novel plant-based foods

In addition to the review component, a cross-sectional analysis was conducted to examine the total fruit, vegetable, legume, and nut content (percentage estimate) of each type of NPBF sold in the United Kingdom. For this, a time-stamped data set of observations from UK supermarkets generated by FoodDB in October 2021 was used. Details are described elsewhere 65 and in Supplementary file 1, section 2.7, in the Supporting Information online . Detailed data at the global level are not available to date; hence, this part of the analysis is limited to the United Kingdom only.

Sensitivity analysis

A common concern about studies on the health impacts and environmental sustainability of NPBFs is that they can be funded by the industry that produces them; hence, we conducted a sensitivity analysis by funding source. Furthermore, given that relative improvements in health and environmental sustainability depend on the baseline comparator used ( Supplementary file 1, section 2.2, in the Supporting Information online ), the sensitivity analysis based on the main primary ingredient of a given NPBF and its respective ABF comparator was also performed. The Wilcoxon test for sensitivity analysis with a significance level set at P  ≤ 0.05 was used.

Systematic search results

A total of 49 563 peer-reviewed and 891 grey literature records were identified from the initial search. After unique literature sources were screened, 57 peer-reviewed articles and 36 grey literature studies met the inclusion criteria ( Figure 1 ). Supplementary 1, section 2, in the Supporting Information online provides further details on the screening process. The study characteristics that were extracted included basic study details (eg, authors, year, type of study, country, number of participants, follow-up period), relevant macro- and micronutrient content (eg, those related to common deficiencies, such as iron, calcium, vitamin B 12 ), health and health proxy data (eg, obesity, micronutrient status, risk factors related to noncommunicable diseases), and environmental variables (eg, carbon, water, and land-use data).

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of systematic review process reporting nutrient composition, and environmental and health outcomes of novel plant-based products in high-income countries. Abbreviations: IPCC, Intergovernmental Panel on Climate Change.

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of systematic review process reporting nutrient composition, and environmental and health outcomes of novel plant-based products in high-income countries . Abbreviations : IPCC, Intergovernmental Panel on Climate Change.

Nutrient composition of novel plant-based foods

The nutrient content of NPBFs was the most frequently studied outcome (n = 56 studies). Nutrient data were typically collected through supermarket cross-sectional surveys or manufacturers’ websites. PB meat alternatives (n = 35) and PB drink alternatives (n = 19) were most frequently reported; fewer studies researched PB cheese (n = 5) and yogurt alternatives (n = 4). No studies were found that assessed PB egg alternatives. The nutritional profile of NPBFs varied greatly by manufacturing process, including the main base ingredient (eg, soy, almond); the processing techniques, time, and temperature applied; and the type of product manufactured (ie, PB drinks, PB meats). 39 , 40 , 66 , 67

Energy density, saturated fat, fiber, sugar, sodium, and micronutrient content of plant-based meat alternatives

The 35 publications evaluating PB meat alternatives reported on 508 PB meat products with 66 ABF comparators. Where the median values for meat comparators were reported to be 221.0 kcal/100 g (interquartile range [IQR], 186.6–246.7), 5.7 g/100 g saturated fat (IQR, 3.2–7.1), and very low fiber (<0.1 g/100 g; IQR, 0.0–0.5), most meat-alternative groups were reported to have lower energy density, lower saturated-fat content, and more fiber ( Figure 2 and Supplementary file 2: Table S1 for detailed macronutrient information disaggregated by main ingredient). Mycoprotein-based meat alternatives were reported to be the least energy dense, with a median energy value of 123.0 kcal/100 g (IQR, 94.0–198.5; with ABFs, P value of difference [ P d ] < 0.001), whereas meat alternatives based on cereals and grain had the highest energy density of all PB meats (226.0 kcal/100 g [IQR, 189.8–268.5]; P d < 0.360), with values very similar to those of meat and poultry. Mycoprotein-based meats were also reported to be lowest in saturated fat (0.8 g/100 g [IQR, 0.5–1.3]; P d < 0.001), whereas nut- and seed-based meats had the highest saturated fat content (1.4 g/100 g [IQR, 1.1–1.7]; P d = 0.003) of all PB meats, which still was significantly lower than saturated fat content in meat and poultry. Finally, mycoprotein-based meat was reported to contain the highest fiber content (median, 6.0 g/100 g [IQR, 5.2–7.1]; P d  < 0.001), whereas cereal- and grain-based meats had the lowest fiber content of all PB meats (3.1 g/100 g [IQR, 2.3–3.9]; P d < 0.001), which still was significantly higher than in meat and poultry.

Macronutrient, sodium, and energy content in plant-based meat and drink alternatives in their respective food group based on main primary ingredient  (ie, predominant or core food item on the ingredient list) compared with meat and poultry, and dairy, respectively. Data were limited to raw products only. Abbreviation: M, median of each category.

Macronutrient, sodium, and energy content in plant-based meat and drink alternatives in their respective food group based on main primary ingredient   (ie, predominant or core food item on the ingredient list) compared with meat and poultry, and dairy, respectively . Data were limited to raw products only. Abbreviation : M, median of each category.

Meat and poultry contained a median of 0.5 g/100 g total sugar (IQR, 0.0–0.9) and 426.7 mg/100 g sodium content (IQR, 101.0–672.8). All PB meats contained more total sugar but had similar levels of sodium in comparison with meat and poultry. Mycoprotein-based meats had the lowest total sugar content of all PB meats (median, 0.8 g/100 g [IQR: 0.5–1.8]; P d < 0.001], and nut- and seed-based meats contained the highest total sugar amount (median, 4.2 g/100 g [IQR, 2.3–6.6]; P d = 0.002); both showed strong evidence of being higher in total sugar content than meat and poultry. This is equivalent to 0.4 g and 3.4 g of total sugar/80.0 g serving size, or, if these sugars are considered free, 1.6% and 13.4% of the maximum recommended approximately 25.0 g average daily sugar intake. 68 Finally, the median sodium values for all PB meat groups did not show strong evidence of a difference from meat and poultry, except for legume-based meats (median, 520.0 mg/100 g [IQR, 400.0–636.0]; P d = 0.011). This is equivalent to 416.0 mg of sodium (or 1.0 g of salt) per 80.0 g serving size, or 20.8% of the maximum recommended 5.0 g average daily salt intake. Moreover, there were extreme outliers, with some PB meats reported to contain more than 1400.00 mg sodium (equivalent to 2.8 g salt) per 80.0 g; thus, consumption of 1 portion of this PB meat alternatives is more than half the recommended maximum daily intake of salt. 69

Only a few studies (n = 9) evaluated micronutrient data; these reported on 250 PB meat products and 24 ABF comparators. Micronutrient content ranged vastly across all groups: whereas some products would provide substantial contributions to average daily requirements, others were much less nutritious ( Table 3 and Supplementary file 2: Table S2 ). 69–83 For example, the median iron content for cereal- and grain-based PB meats (5.4 mg/100 g [IQR, 4.2–5.4]) was higher than the median of meat and poultry (1.3 mg/100 g [IQR, 1.1–1.6]). On the contrary, vitamin B 12 levels were lower for PB meat alternatives (medians ranged from 0.1 μg/100 g [IQR: 0.0–0.9] to 0.3 μg/100 g [IQR: 0.3–0.3]) as compared with 1.2 μg/100 g (IQR: 0.6–1.6) in meat and poultry. However, certain individual products had a comparable or higher vitamin B 12 content than their ABF comparator.

Summarized micronutrient values for PB meat and drinks and animal-based foods a

Values are compared with global average daily requirements (see Supplementary file 2 in the Supporting Information online for detailed information containing all disaggregated numbers by main ingredient of each novel plant-based food and animal-based foods). The table only reports micronutrients commonly found in meat and dairy. PB products also provided other micronutrients not commonly found in meat and dairy (ie, calcium in PB meats).

Abbreviations : ADR, average daily requirement; max, maximum; min, minimum; IQR, interquartile range; PB, plant-based.

No studies reported nutrient data from organic products. Although protein levels were not the main focus of this study, protein results are reported in Supplementary file 1: Figure S2 and Supplementary file 2: Table S1 , and show that, particularly, legume- and mycoprotein-based PB meats typically match meat and poultry in protein content.

Energy density, saturated fat, fiber, sugar, sodium, and micronutrient content of plant-based drinks

The 19 studies evaluating PB drinks reported on 397 PB drinks (unflavored and unsweetened) and 52 dairy milk products. Where dairy milk comparators were reported to contain median values of 50.1 kcal/100 mL energy density (IQR, 39.3–63.0), 1.1 g/100 mL saturated fat (IQR, 0.9–2.2), and no fiber (0.0 g/100 mL; IQR, 0.0–0.0), most PB drink groups were reported to have lower energy density, lower saturated fat content, and more fiber ( Figure 2 and Supplementary file 2: Table S1 ). Coconut-based drinks were reported to be the least energy dense (median energy value, 20.0 kcal/100 g [IQR: 19.0–33.7]; P d < 0.001), whereas drinks based on cereals and grains had the highest energy density of all PB drinks (median, 59.0 kcal/100 mL [IQR: 43.0–57.0]; P d = 0.566) but not significantly higher than dairy milks. PB drinks made of cereals and grains, fruits and vegetables, and nuts and seeds were reported to be lowest in saturated fat (median, 0.2 g/100 mL; IQRs, 0.1–0.2, 0.2–0.2, and 0.1–0.3, respectively; P d < 0.001), whereas coconut-based drinks had the highest saturated fat content (median, 1.1 g/100 mL; IQR, 0.9–1.7; P d = 0.952) of all PB drinks, but this was not significantly different than dairy milks. All PB drinks contained more fiber than dairy milks; however, only the drinks based on cereals and grains, legumes, and nuts and seeds were significantly higher in fiber when compared with dairy milks (for cereals and grains, and for legumes: median, 0.5 g/100 mL [IQRs, 0.2–0.8 and 0.2–0.6, respectively]; and for nuts and seeds, 0.3 g/100 mL [IQR, 0.3–0.5]; P d < 0.001).

Dairy milks contained a median of 4.7 g/100 mL total sugar (IQR, 4.3–5.0) and 39.1 mg/100 mL sodium (IQR, 33.6–43.3). Most PB drinks contained less total sugar than did dairy milks, but they had similar levels of sodium. However, the total sugar content was only significantly lower for coconut (median, 1.9 g/100 mL; IQR, 1.5–2.5), legumes (median, 1.9 g/100 mL; IQR, 0.5–2.6), and nut- and seed-based drinks (median, 2.4 g/100 mL; IQR, 0.2–3.3) when compared with dairy milks ( P d < 0.001). This is equivalent to 3.8 g and 4.8 g of total sugar/200.0 mL serving size, or, if these sugars are considered free, 15.2% and 19.2% of the maximum recommended 25.0 g average daily sugar intake. 68 The only PB drink group that was statistically different in sodium content compared with dairy milks was the group based on nuts and seeds (median, 47.2 mg/100 mL [IQR, 34.0–60.0]; P d = 0.032). This is equivalent to 94.4 mg of sodium (0.2 g of salt) per 200.0 mL serving size, or 4.0% of the maximum recommended 5.0 g average daily salt intake. 69 However, there were also some extreme outliers, some of which reported containing more than 3 times this amount of sodium per 200.0 mL, the equivalent of approximately 12.0% of the daily World Health Organization recommendation. 69

A few studies (n = 16) evaluated micronutrient data of PB drinks, reporting on 249 PB alternative products and 37 ABF comparators. Iodine was only reported in PB drinks, not in other types of PB products. Like PB meat alternatives, micronutrient content ranged vastly across all groups: some products contributed to the average daily requirement, whereas others were much less nutritious ( Table 3 and Supplementary file 2: Table S2 ). For example, the median calcium content for all PB drink categories was 120.0 mg/100 mL (IQRs as follows: cereals and grains, 120.0–120.0; coconut, 120.0–120.0; fruits and vegetables, 120.0–120.0; legumes, 120.0–120.0; nuts and seeds, 114.5–120.0) as compared with 116.7 mg/100 mL (IQR, 109.3–124.0) for dairy milks. However, none of the PB products (median, 0.0 μg/100 mL; IQR, 0.0–1.4) matched the iodine content of dairy milks (median, 24.9 μg/100 mL; IQR, 20.0–36.5).

Only 4 studies (evaluating 29 PB drinks and 11 dairy milk products) reported nutrient data from organic PB products. All evaluated different nutrients, hence no further pooling of results was possible for organic products as a subgroup. Protein results are reported in Supplementary file 1: Figure S2 and Supplementary file 2: Table S1 in the Supporting Information online, which show that, particularly, legume-based PB drinks typically match dairy milk in protein content.

Energy density, saturated fat, fiber, sugar, sodium and micronutrient content of plant-based yogurt alternatives

The 4 studies on PB yogurt alternatives evaluated 191 PB yogurt products with 90 dairy-based comparator products (unflavored and unsweetened). The overall nutritional composition of PB yogurts appears to show some variation by main primary ingredient (see Supplementary file 2 in the Supporting Information online ); however, formal disaggregated assessment of PB yogurts by primary ingredient was not possible, because that information was often not reported by authors. At an aggregate level, PB yogurts typically contained less saturated fat and sodium but had a higher energy density and higher total sugar and fiber content.

Only 2 studies evaluated micronutrient data of PB yogurts (excluding sodium) and, therefore, no further pooling of results was possible. No studies reported nutrient data from organic PB yogurts. Protein results are reported in Supplementary file 2: Table S1 in the Supporting Information online . Only the sample of a legume-based PB yogurts came close to matching dairy yogurt in protein content.

Energy density, saturated fat, fiber, sugar, sodium and micronutrient content of plant-based cheese alternatives

The 5 studies evaluating PB cheese alternatives reported on 163 PB cheese products with 143 dairy-based comparator products. PB cheese alternatives were the least nutritionally diverse foods. Where the primary ingredient of PB cheeses was known, this was mostly coconut oil ( Supplementary file 2 in the Supporting Information online ); however, like PB yogurts, the main ingredient was often not reported by authors.

The cheese comparators were reported to contain median values of 284.0 kcal/100 g energy density (IQR, 108.0–330.1), 14.0 g/100 g saturated fat (IQR, 11.0–17.3), and no fiber (0.0 g/100 g; IQR, 0.0–0.0). Most PB cheese subgroups were reported to have higher energy densities and higher saturated fat and fiber content. PB cheese based on nuts and seeds had the highest energy density (328.0 kcal/100 g [IQR, 306.0–328.0]; P d = 0.334]), whereas coconut oil-based cheese had the highest saturated fat content (21.0 g/100 g [IQR, 19.7–22.0]; P d < 0.001]), a significant difference, with 50.0% more than dairy cheese. Unlike PB drinks, PB meat, and PB yogurt alternatives, not all PB cheese contained fiber. Nut- and seed-based cheese had the highest fiber content (median, 2.5 g/100 g [IQR, 2.4–2.7]; P d < 0.001). Although the median fiber content of PB cheese made from coconut oil was 0.0 g/100 g (IQR, 0.0–1.7; P d = 0.011), some products did contain up to 5.9 g/100 g and, therefore, strong evidence was found that both PB cheese based on nuts and seeds and on coconut oil had significantly higher fiber content than did dairy cheese.

Most PB cheese contained less sugar and sodium than did dairy cheese, which had a median of 2.0 g/100 g (IQR, 0.5–5.0) and 720.0 mg/100 g (IQR, 560.0–1000.0), respectively, across the identified studies. In general, PB cheese alternatives had either no or minimal total sugar content. Finally, coconut oil–based cheese had the highest sodium content across all PB cheese (median, 714.0 mg/100 g [IQR, 600.0–880.0]; P d = 0.897), but this was similar to dairy cheese. PB cheese made of nuts and seeds had the lowest median sodium content (240.0 mg/100 g [IQR, 200.0–240.0]; P d = 0.001), which would equal 48.0 mg of sodium (0.1 g of salt) per 20.0 g serving size, or 2.0% of the recommended maximum daily salt intake 69 ; hence, this type of PB cheese had a large reduction in sodium compared with dairy cheese.

The micronutrient content of PB cheese was evaluated by only 2 studies. Only 1 product made of nuts and seeds was fortified with calcium, whereas coconut-based PB cheese was typically fortified with vitamin B 12 (median, 2.5 μg/100 g; IQR, 2.5–2.5). For dairy cheeses, these medians were 815.0 mg/100 g (IQR, 463.0–930.0) for calcium and 2.5 μg/100 g (IQR, 1.8–2.5) for vitamin B 12 .

No studies reported nutrient data from organic products. Protein results are reported in Supplementary file 2: Table S1 in the Supporting Information online. Nut- and seed-based cheese typically had the highest protein content, though it did not match the protein content of dairy cheese.

Health impacts and risk factors of novel plant-based foods

Eleven peer-reviewed studies were included in this review, 9 of which evaluated PB meat alternatives and 3 evaluated PB drinks ( Table 4 ) 84–94 (see Supplementary file 1, section 3.3, in the Supporting Information online for further details on the health outcomes). No health studies were found that evaluated consumption of PB cheese, yogurt, or egg alternatives; links between NPBFs and mental health outcomes; nor any grey literature evaluating any health outcomes.

Summary of the evidence on the health impacts and risks of novel plant-based foods

Health impacts and risk factors of plant-based meat alternatives

Studies of PB meats (n = 9) showed positive health outcomes when individuals switched from consuming ABFs. Three studies on mycoprotein consumption by both healthy and overweight adults found a positive association with lower glycemic markers, 84 reduced energy intake, 84 , 85 and insulin release. 85 Moreover, mycoprotein consumption was hypothesized to have a beneficial impact on the plasma lipidome. 86

Four studies with healthy adults evaluated PB meat alternatives consumption (other than mycoprotein). When considering the same caloric intake, consumption of PB meats was associated with a lower risk of cardiovascular disease than was consumption of ABFs, mostly by reducing fasting serum levels of trimethylamine- N -oxide, and low-density lipoprotein cholesterol concentrations, compared with ABF consumption. 87 Furthermore, consumption of PB meats was associated with a reduction in body weight as compared with meat consumers. 87 , 88 Lysine-enriched PB meat as a substitute for ABFs was reported to increase muscle protein synthesis rates, which is a biological process of building new protein cells via amino acids. 89 Last, the replacement of 4 meat-containing meals per week with PB meat alternatives elicited positive changes in the gut microbiome, with changes in the presence of butyrate-producing pathways and increased taxa. 90

Health impacts and risk factors of plant-based drinks

Studies assessing PB drinks (n = 3) only focused on almond and soy drinks. The main focus and health outcomes of these studies varied. Sun et al 91 researched the reduction in glycemic response in young adults consuming soy drink or bovine milk together with white bread. These authors found that both products had a similar glycemic response through different biological pathways. Dineva et al 92 assessed micronutrient content in PB drinks and found significantly lower iodine intake and urinary iodine concentration in people consuming only PB drinks, 93 highlighting the need for appropriate fortification as more people transition to eat more NPBFs. Finally, Shen et al 93 evaluated the impact of PB drinks on dental health and found that a soy drink with added sugar caused enamel demineralization, compared with dairy milk, which promoted remineralization.

Environmental impacts of novel plant-based foods

A total of 53 studies evaluated at least 1 environmental outcome, using the life cycle assessment method, evaluating 209 PB products and 91 ABFs as comparators. Most studies used life cycle assessment inventories, and some relied on data providers (n = 32) to calculate environmental footprints. System boundaries varied across studies, with the majority evaluating category impacts from cradle-to-retail (see Supplementary file 3 in the Supporting Information online ). Studies mainly assessed the effect of substituting ABFs with NPBFs on greenhouse gas emissions (GHGE) (n = 50), followed by blue-water footprint (WF) (n = 39) and land use (LU) (n = 17) ( Figure 3 and Supplementary file 1: Table S11 in the Supporting Information online ). Although methods, assumptions, and inventory data varied from 1 study to another, most studies consistently reported percentage reductions in GHGE and LU for the production of NPBFs as compared with ABFs. Wider differences were observed in blue WF.

Reduction of environmental impacts by respective funding source. Calculated as a percentage difference between each novel plant-based (PB) product (by product type and food group based on main primary ingredient [ie, predominant or core food item on the ingredient list]) in comparison with their respective reported baseline (eg, dairy milk and cheese, meat and poultry). See Supplementary file 3 in the Supporting Information online for detailed information on the baseline used for each reference. Data were limited to raw products only. Studies reporting data on cooked PB products also found reductions in environmental impacts.

Reduction of environmental impacts by respective funding source . Calculated as a percentage difference between each novel plant-based (PB) product (by product type and food group based on main primary ingredient [ie, predominant or core food item on the ingredient list]) in comparison with their respective reported baseline (eg, dairy milk and cheese, meat and poultry). See Supplementary file 3 in the Supporting Information online for detailed information on the baseline used for each reference. Data were limited to raw products only. Studies reporting data on cooked PB products also found reductions in environmental impacts.

Environmental footprints of plant-based meat alternatives replacing meat and poultry

The 34 publications evaluating PB meat alternatives reported on 135 PB meat products with 53 ABF comparators. The percentage difference showed reductions of more than 70% in GHGE, LU, and WF for most products when shifting from ABFs to PB meat alternatives. GHGE reductions across PB meat groups, based on primary ingredients, were similar, with the largest reduction in GHGE seen for nut- and seed-based meats, with a median value of –94.2% (IQR, –94.4 to –93.4), whereas PB meats based on legumes had the smallest reduction (–86.1%; IQR, –88.6 to –77.5). Only 2 of 134 PB products had higher levels of GHGE than their ABF comparator. For LU, mycoprotein (median, 89.0%; IQR, –92.3 to –76.5) and nut- and seed-based meats (median, 89.5%; IQR, –90.0 to –89.0) had the largest reduction. Alternatively, legume-based meats had the smallest LU reductions (median, –71.2%; IQR, –84.7 to –47.6). Only 3 of 55 products had higher LU than their ABF comparator. Finally, the largest reduction of WF was observed in PB meats made of cereals and grains (median, –92.6%; IQR, –94.1 to –92.0), and the smallest was observed with products made of mycoprotein (median, –73.7%; IQR, –84.4 to –55.2). Nine of 51 products had a higher WF than their respective ABF counterparts. Specifically, when certain individual legume- and mycoprotein-based meats were compared with chicken, PB meat alternatives reported requiring between 2.7% and 339.0% more water, with the largest difference observed in a Swedish chicken comparator to mycoprotein-based meats. This variation was attributed to differences between feed types, rearing systems, and farm efficiency across countries. 74 Comparisons were also made between the upper limit footprint of mycoprotein-based items and the average or lower limit footprint of the ABF. Moreover, there were extreme outliers, with some PB meats reporting a water percentage difference of 8006.9%. The authors attributed this to soybeans’ substantial water demand during processing and lower yield per soybean. 74

Environmental footprints of plant-based drinks alternatives replacing dairy milk

The 21 publications evaluating PB drinks reported on 51 PB drink products with 13 ABF comparators. PB drinks also were associated with reductions in GHGE and LU when shifting from dairy milk to PB drinks. Fruit- and vegetable-based drinks had the largest reduction of GHGE (median, –90.2%; IQR, –90.8 to –90.2]), whereas PB drinks based on cereals and grains had the smallest reduction (median, –76.9%; IQR, –88.8 to –56.0). Only 2 products of 36 had an increase of GHGE when comparing soy- (40.0%) and almond-based (18.9%) drinks with dairy milk (equivalent to 0.3, 0.4, and 0.3 kg CO 2 eq/100 g, respectively). 95 Wider differences were observed on the LU percentage difference; however, reductions were found for all products (n = 13 PB drinks).

Cereal- and grain-based drinks had the largest reduction (median, –86.4%; IQR, –92.7 to –76.0), whereas legume-based drinks had the smallest LU reductions (median, –56.6%; IQR, –75.5 to –38.8). The magnitude of change in the percentage difference for WF varied considerably, although, these data were less frequently reported by authors (n = 11 PB drinks). Cereal- and grain-based drinks had the largest reduction (median, –85.0%; IQR, –88.7 to –71.0), whereas legume-based drinks had the smallest WF reductions (median, –67.6%; IQR, –73.9 to –42.2). Nut- and seed-based drinks presented contradictory evidence. For example, Grant and Hicks 95 observed that almond drinks (9241.9%) required considerably more water than soy (–35.6%) and dairy milks (equivalent to 109.3, 0.8, and 1.2 L/100 g, respectively); whereas Ritchie 96 found that an almond drink required half the amount of water (–40.87%) than dairy milk (equivalent to 37.2 and 62.8 L/100 g, respectively). Data were limited to these 2 products; hence, no further pooling of results was possible.

Environmental footprints of plant-based yogurt alternatives replacing dairy yogurt

The 2 publications evaluating 2 PB yogurt alternatives compared to 2 dairy yogurts. They reported GHGE reductions ranging between –64.7% and –52.9%. Analysis of LU and WF was not possible due to lack of a baseline, differences in methods, and system boundaries.

Environmental footprints of plant-based cheese alternatives replacing dairy cheese

The 2 publications evaluating PB cheese alternatives reported on 21 PB cheese products with 23 ABF comparators. Data on the environmental impacts were particularly from coconut oil–based cheese alternatives (n = 20). All coconut oil–based cheese alternatives had a large reduction in amounts of GHGE and LU (GHGE: median, –75.4% [IQR, –77.4 to –59.3]; LU: median, –83.1% [IQR, –83.8 to –80.6]). A smaller reduction was observed in WF (median, –45.1%; IQR, –52.0 to 38.5), with a higher WF being reported than for the ABF comparator for only 3 products.

Health effects and environmental impacts of novel plant-based foods

Studies that simultaneously assessed both health and environmental outcomes and/or nutrient profiles of NPBFs were pooled ( Figure 4 ). Only 1 study reported environmental outcomes together with diet-related health effects of PB meat alternatives, and this study found that free access to NPBFs was associated with greater weight loss and reduced dietary carbon and LU, as compared with a control arm. 88 From 93 references, 20 studies assessed the environmental outcome and nutrient content of NPBFs; only 6 studies evaluated the health effects and nutrient content of NPBFs (see Supplementary file 1: Table S9 in the Supporting Information online ).

Reduction of environmental outcomes and their associated nutrient outcomes of novel plant-based foods (NPBFs) compared with baseline (eg, dairy milk and cheese, meat and poultry), expressed in percentage difference. The y-axis shows the increase or decrease of the nutrient content (energy, fiber, sodium, and saturated fat) in comparison with baseline; and the x-axis shows the reduction (or increase) of the environmental categories. Three environmental categories are reported: greenhouse gas emissions (circles), land use (triangles), and blue-water use (squares). Three NPBFs are reported: plant-based (PB) cheese alternatives (brown), PB meat alternatives (purple), and PB drinks (orange). PB yogurts were not included due to the limited amount of data. See Supplementary file 2 in the Supporting Information online for detailed information on the baseline used for each reference. Data were limited to raw products only.

Reduction of environmental outcomes and their associated nutrient outcomes of novel plant-based foods (NPBFs) compared with baseline (eg, dairy milk and cheese, meat and poultry), expressed in percentage difference . The y -axis shows the increase or decrease of the nutrient content (energy, fiber, sodium, and saturated fat) in comparison with baseline; and the x -axis shows the reduction (or increase) of the environmental categories. Three environmental categories are reported: greenhouse gas emissions (circles), land use (triangles), and blue-water use (squares). Three NPBFs are reported: plant-based (PB) cheese alternatives (brown), PB meat alternatives (purple), and PB drinks (orange). PB yogurts were not included due to the limited amount of data. See Supplementary file 2 in the Supporting Information online for detailed information on the baseline used for each reference. Data were limited to raw products only.

When compared with ABF counterparts, data suggest NPBFs are overwhelmingly associated with smaller environmental footprints. Data on nutritional profiles of NPBF were mixed: nutritional profiles for some NPBF groups were better aligned with healthy diets, but not for others. Clear co-benefits were observed for fiber intake from NPBFs. However, for the other nutrients, the picture was much more mixed due to the variability in content arising from differences in the main primary ingredients and the type of NPBFs.

Fruit, vegetable, legume, and nut content of novel plant-based foods

The percentage of fruit, vegetable, legume, and nut content in each NPBF in the United Kingdom was estimated as a case study ( Figure 5 ). Most NPBFs had at least 1 fruit, vegetable, legume, or nut, ranging from 0.0% to 100.0% of their weight. Overall, median content was low, with a few exceptions. PB meat alternatives had the highest content of vegetables and legumes, and PB cheese alternatives had the lowest content ( Supplementary file 1: Figure S5 and Supplementary file 2: Table S5 in the Supporting Information online ).

Estimated fruit, vegetable, legume, and nut content (%) in each novel plant-based foods product from time-stamped data from UK supermarkets. Panels show (a) plant-based (PB) drink alternatives; (b) PB meat alternatives; (c) PB cheese alternatives; and (d) PB yogurt alternatives.

Estimated fruit, vegetable, legume, and nut content (%) in each novel plant-based foods product from time-stamped data from UK supermarkets . Panels show (a) plant-based (PB) drink alternatives; (b) PB meat alternatives; (c) PB cheese alternatives; and (d) PB yogurt alternatives.

Assessment of robustness and relevance of the included studies

For results on the assessment of robustness and relevance of the included studies see Supplementary file 1 : Table S12 in the Supporting Information online in section 3.6 .

Sensitivity analysis of funding sources of nutrient composition studies

Almost half of the nutrition studies included (n = 26; 46.4%) were funded by academic funders; 44.6% (n = 25) were fully funded or partially funded by industry; and 10.0% (n = 5) did not state their funding source. NPBF manufacturers were the support for the majority of industry-funded studies (n = 21; 37.5%), followed by the livestock industry (n = 3; 5.4%), and both (n = 1; 1.8%). The sensitivity analysis of the percentage difference for all the nutrients associated with the burden of disease, except total sugar, revealed that studies funded by industry were more likely to find differences than those funded by academia, with the former typically reporting more positive results on lower energy and saturated fat ( Table 5 and see Supplementary file 1: Table S13 in the Supporting Information online for sensitivity analysis on studies partially funded by the industry). However, the direction across all studies was the same: reductions in energy and saturated fat content, and increases in fiber, total sugar, and sodium content.

Sensitivity analysis, based on funding source, of the percentage difference between novel plant-based foods vs animal-based foods in nutrient content and environmental impacts a

The funding source of 6 articles were unknown, so they were excluded from this analysis. The superscript b and c indicate the direction and dimension of the association.

Industry-funded studies show a more positive impact on health and environmental outcomes of their PB products (vs animal sourced foods) as compared with academically funded studies.

Industry-funded studies show a less positive impact on health and environmental outcomes of their PB products (vs animal-sourced foods) as compared with academically funded studies.

Abbreviations : ABF, animal-based food; IQR, interquartile range; NPBF, novel plant-based food.

Sensitivity analysis of funding sources of health studies

Only 2 health studies were funded by academia; the rest of the studies were either partially or wholly funded by industry (n = 9). Most industry-funded studies were from NPBF manufacturers (n = 8); 1 study was partially funded by Dairy Australia.

Sensitivity analysis of funding sources of environmental studies

Compared with nutritional studies, a greater percentage of environmental studies were by industry researchers, particularly from NPBF manufacturers (67.9%). Approximately 71.7% of studies (n = 38) were fully funded or partially funded by industry; 26.4% (n = 14) were supported by academic funders; and 1.9% (n = 1) did not state their funding source. Of the industry-funded studies, only 2 (3.8%) were funded by the livestock industry. The sensitivity analysis revealed that the percentage differences were significantly larger between academic and industry funders in terms of GHGE and LU. Studies funded by industry typically reported more positive results on LU than did studies funded by academic funders, and the opposite was observed for GHGE. Like nutrient studies, the direction (decreases in GHGE, LU, and WF) was the same regardless of the funding source ( Table 5 , and see Supplementary file 1: Table S13 in the Supporting Information online for the sensitivity analysis of studies partially funded by the industry).

Research findings

We reviewed evidence from high-income countries that was published in peer-reviewed and grey literature within the past 7 years on nutrient content, and environmental and health outcomes of consuming NPBFs. Most NPBFs typically have much lower environmental impacts compared with ABFs, particularly with respect to GHGE and, to a lesser extent, to LU and WF. The nutrient content of NPBFs is highly variable in comparison to the nutrient profiles of ABFs. Although several individual NPBFs had positive health and environmental outcomes, co-benefits identified were not universal across all NPBFs and several trade-offs were identified. The main primary ingredient, type of product, processing techniques, and brand were all important determinants of health, and nutritional and environmental outcomes, findings that show the need for further subcategorization of NPBFs to better educate consumers and enable them to take informed decisions regarding the healthiness and sustainability of their diets and (potential) dietary changes.

Research in context

If carefully selected, certain NPBFs (particularly certain PB drinks and meat alternatives) could be an effective part of interventions to achieve net-zero and health targets in high-income countries. By applying a combination of strategies, enhanced uptake of these foods could improve the nutritional quality of diets, improve health, and contribute to tackling climate change impacts.

At the macronutrient level, NPBFs are generally the healthier option, given their higher fiber content and typically lower saturated fat and calorie contents, which could be advantageous in high-income (often obesogenic) settings. Certain types of NPBFs, particularly mycoprotein and legume-based meats, often also contain a substantial amount of fruit, vegetables, legumes, and/or nuts, which are food groups that are typically underconsumed in high-income settings. Composition of legume and fruit and vegetable-based drinks, were also typically consistent with healthier diets in high-income food secure settings, including low energy density, low total sugar, high fiber and low saturated fat content. Caution is recommended in the selection of these products if they were to be part of dietary recommendations, or standard institutional procurement for example, as certain NPBFs can also have higher levels of total sugar, sodium, and saturated fats in comparison to their respective ABF. This is particularly true for certain cereal and grain-based drinks, and coconut-based cheese and yogurts. Although the specific type of oil used in each NPBF product was not analyzed, coconut oil, which is high in saturated fatty acids, is often the ingredient that increases saturated fat levels in NPBFs to levels similar to its ABF counterparts. 51 , 75 Indeed, coconut oil-based cheese had approximately 50% more saturated fat than dairy cheese, and typically contained the least amount of fruit, vegetables, legumes or nuts, with the majority being absent.

In line with other evidence, 39 , 97 , 98 fortified NPBFs, in some cases, can be nutritionally comparable to their respective ABFs. Some individual NPBFs contained even higher concentrations of iron, vitamin B 12 , and calcium, whereas others did not. However, micronutrient assessment was difficult because not all included studies reported micronutrients. This could be because either NPBFs were unfortified or the information simply was not reported. Especially when nutrient information is gathered from supermarket websites for individual studies, micronutrient data are generally not reported.

The highly varying nutrient content across and within all PB products and categories may cause consumer confusion when individuals are looking for healthy and environmentally friendly alternatives to ABFs. Clearer front-of-package labelling of certain nutrients and information campaigns could reduce such confusion and better enable the consumer to make informed decisions about food purchases. 99 Potential development of rules and regulations on the food standards of NPBFs could also be a step forward in having a larger range of “healthy” NPBFs, because such regulations could potentially encourage reformulation of NPBFs, including the reduction of sodium, total sugar, and saturated fat content, and increased micronutrients. From a technological perspective, this is certainly possible. For example, new biotechnological techniques have been developed that enable companies to reduce sugar content and improve palatability, nutrient profile, and digestibility of PB drinks. 67 , 100–103 Some processing techniques can also decrease levels of anti-nutrients and polyphenols, which commonly are associated with low mineral and vitamin bioavailability, 35 , 98 , 101 , 104–107 and increase protein yield. 101 Given that specific raw materials, isolated proteins, processing levels, and fortification methods, often used in NPBFs, as compared with ABF nutrient profiles, are still debated in the scientific community, further research on the nutrient content and health risks related to bioavailability, bioaccessibility, and byproduct formation during industrial processes will reveal whether there are differences in terms of health impacts of “natural” vs more “isolated” nutrients. 30 , 108 , 109 More research into the metabolic profiles of NPBFs is imperative, particularly in light of a recent study identifying differences in the abundance of profiled metabolites between beef and PB burgers, despite their labelled nutritional similarities. 110 Instead of continuing the debate between the superiority of ABFs vs NPBFs, or vice versa, acknowledging and embracing their complementary differences can contribute to a less polarized dietary transition. This is especially relevant because emerging evidence has suggested that people who consume NPBFs also tend to purchase ABFs. 111

From the limited evidence on health, the inclusion of NPBFs into diets appears to typically have beneficial health effects, particularly the consumption of PB meat alternatives. The positive health effects mostly relate to better weight management and associated reduced risk of noncommunicable diseases in high-income (and often obesogenic) countries. This is aligned with a recently published meta-analysis that found positive outcomes on total cholesterol, low-density lipoprotein cholesterol and triglycerides when consuming PB meat alternatives as replacements for meat. 51 Furthermore, a few older studies also found positive health outcomes when assessing consumption of mycoprotein-based foods (eg, drinks, cookies, milkshakes, crisps) 112–115 and soy protein with isoflavones, 50 compared with consumption of dairy milk and/or meat products.

Previous evidence revealed that NPBFs are often regarded as healthier alternatives to ABFs 116 ; hence, it could be hypothesized that people may consume NPBFs in larger quantities than they would otherwise have done when eating ABFs. This may have negative health implications, especially if consumed regularly. Establishing a clear division in PB foods classifications, including ultraprocessed and less processed PB alternative foods, could enable better assessment of short- and long-term health impacts of NPBFs if they were to be consumed at an even larger scale. 116

Ultraprocessed foods have been associated with many diet-related diseases because these foods are generally energy dense and hyperpalatable. 117 , 118 Almost all NPBFs fall, technically, within this category; however, in this review, we found that the nutritional composition of some NPBFs aligns well with healthy dietary recommendations, such as having a high fiber content, low energy density, and low saturated fat content. Additionally, 1 of the included studies 90 also found positive associations with the gut microbiome when substituting meat in certain meals with PB meat alternatives. To get a better overview of the overall effect of NPBFs on health, more information and detailed analyses are needed regarding level of processing and gastrointestinal fate.

Consistent evidence was found regarding environmental outcomes, similar to previous research. 52 , 53 , 108 , 119–121 Most NPBFs had smaller environmental footprints than their ABF counterparts, with median reductions reported of up to 94.3%, 89.5%, and 92.6% for GHGE, LU, and WF, respectively. Nevertheless, some PB products had greater environmental impacts than their ABF counterparts, with some extreme outliers particularly in terms of WF. Although evidence was rather consistent, and the direction of effect appears to be clear, care should be taken not to overinterpret the exact numerical results: environmental impact calculations are notoriously context dependent and sensitive to methodological and data choices. This makes it impossible to come up with a summary figure that is representative for all products, produced in all countries; generally, however, there is a broad body of evidence demonstrating a reduction in GHGE, LU, and WF for a wide range of PB products in a wide variety of contexts compared with their ABF equivalents.

To improve the strategic use of NPBFs to achieve more sustainable food systems, life cycle assessments of these products should incorporate the full range of environmental impact categories, as well as sociocultural, economic, and health impacts with harmonized methods and assumptions across studies.

This study revealed an evidence gap for health impacts of NPBFs, including mental and dental health, and other risks associated with micronutrient deficiencies. There is also a lack of health studies on PB yogurts, PB cheese, and PB egg alternatives. Research on the health effects of PB drinks has been conducted with only certain products, “generally soy and almond drinks,” but there is a gap in knowledge about other PB drinks, such as those made from oat, potato, and hazelnut, among others. Furthermore, some concerns have been raised about the carbohydrate content in some PB drinks. A study by Jeske et al 122 revealed that the presence of β-glucan in many oat-based drinks causes a moderate glycemic index, despite the high carbohydrate content. In fact, Dhankhar 104 associated the consumption of oat drinks with high β-glucan levels with a reduction in cholesterol levels in study participants. However, this evidence needs to be updated to reflect the potential benefits of different types of PB drinks and current market brands. Although dairy products contain naturally occurring sugars from lactose, it is difficult to determine the breakdown of “natural” vs added sugars in NPBFs from the available literature. More research is also required on dental health to assess the potential risks of increased dental cavities due to lower calcium bioavailability, and the effects of free sugar content, pH levels, and buffering capacity in NPBFs.

Additional research is needed to provide more nutrient environmental and health evidence for PB yogurts, cheese, and egg alternatives. Last, although this review assessment focused on 3 environmental outcomes, evidence on other environmental impacts, including biodiversity loss and socioeconomic implications, is scarce. Across the 3 themes assessed in this review, better standardization and clear reporting of results in NPBF studies in the future would facilitate updates of this review.

Relevance for policy and practice

Minimally processed PB foods are still considered the gold standard for healthier and more sustainable diets. However, shifts from ABFs to PB whole foods remain problematic because, despite all the scientific knowledge about healthy eating, dietary change toward minimally processed PB foods has not been achieved. This review revealed that NPBFs can be healthier and more environmentally friendly alternatives to ABF consumption, if carefully selected. Although behavioral aspects are embedded in this transition, NPBFs could offer a convenient, novel, and potentially more realistic option to facilitate dietary transitions at large scale, diversifying diets, and increasing consumption of fruits, vegetables, legumes, and nuts without the need for significant individual dietary habits.

For potential promotion of the inclusion of NPBFs as part of public procurement or embedding them into food-based dietary guidelines, some of the consideration regarding varying healthiness of specific types of NPBFs and the need for further subclassifications needs to be carefully addressed. Furthermore, affordability is a concern because NPBFs often are more expensive than their ABF counterparts. Although comprehensively synthesizing price data was outside of the scope of this study, in the United Kingdom, the Food Foundation found that PB drinks are, on average, 50.0% more expensive than dairy milk. 71

Active promotion of NPBFs would require more detailed analysis of consumer behavior: current consumption of NPBFs is generally higher among younger generations, women, White populations, and those with higher education and incomes. 28 Better understanding of main drivers and barriers of consumption of NPBFs would allow targeted promotion to widen this consumer group. 71 NPBFs could play an additional role in reducing the prevalence of micronutrient deficiencies, especially given their reformulation and fortification potential. For example, in Finland, a mass fortification strategy of vitamin D across dairy and nondairy products has shown positive health outcomes over the past decade. 123 Finally, formalization, standardization, and accountability of environmental labelling could help consumers making informed decisions and avoid misinformation.

Strengths and limitations

To our knowledge, this is the first systematic review assessing the published peer-reviewed and grey literature evidence from studies that evaluated nutrient, and health and environmental impacts or benefits of NPBFs. A strict and comprehensive search string was developed to assess the full breadth of studies and reports, and machine-learning models were used to filter the large number of studies and systematically present all the available evidence on various NPBFs.

This study only covered the past 7 years to assess the current evidence, and an exhaustive cross-check of references was not performed, which possibly introduces reporting bias for missed relevant studies from previous years. However, it was assumed that only a small amount of additional findings had been missed, given the recent emergence of the variety and types of these novel products. Second, only 3 environmental impact categories were examined: carbon footprint, LU, and blue-water consumption. However, the heterogeneity of study designs, from system boundaries to geographical location, agricultural inputs, and methods used to calculate environmental footprints, made the review process too time consuming to expand on other environmental impacts in this particular study. Reliable reporting of environmental impacts of novel ingredients used in NPBFs, including added minerals and vitamins for fortification purposes, are generally missing in many studies. All the data reported by authors were collected and each study was compared individually against its own baseline (ie, the ABF comparator provided by author). Given the large spectrum of methods to determine environmental footprints, this could have introduced some bias; however, the alternative (using a standardized comparator) would equally have its limitations (eg, this would not be representative for all farming systems and products). Third, products and nutrients were assessed individually. Although the nutrient content gives some guidance on probable health risks, in reality, people consume diets in which individual compounds interact, influencing unknown biological pathways. Fourth, several studies that did not specifically report on the proportion and type of NPBF in (self-)reported PB diets had to be excluded. For those studies, it was impossible, therefore, to assess the effect on health and environment of NBPFs alone vs all PB foods together (ie, whole foods, NPBFs, other PB foods such as tofu and tempeh) and complicated any efforts to calculate dietary shifts. Finally, most studies did not report the precision of measures of effect (n = 68), making it difficult to pool and synthesize results across the 3 themes assessed in this review.

Food systems and diets need to change to meet environmental and health targets. This comprehensive systematic review presents a holistic approach to summarize the evidence on the nutrient, health, and environmental impacts of NPBF consumption. Although PB whole foods remain the preferred option on health grounds, some NPBFs have potential for being a useful steppingstone in the process of food system and dietary transformation, functioning as a healthy and environmentally friendly alternative to ABFs, if carefully selected. Reformulation and fortification could further enhance NPBFs as a viable and effective food group that could accelerate the dietary transition toward sustainable and healthy diets. However, given the great variability in nutritional composition of individual NPBFs, widespread promotion of such products should be introduced and addressed with caution. Given that NPBFs are already important in the food system and consumption is expected to continue to increase, a few steps are urgently required to guide consumers and enable them to make informed decisions regarding their diets. These include a further subdivision or categorization of NPBFs, which currently fall mainly in the ultraprocessed (hence, “unhealthy”) food category. Furthermore, standardized and verifiable environmental assessments of NPBFs are needed to compare foods with regard to their environmental footprints. Finally, more research on the short- and longer-term health effects of NPBFs is urgently required to facilitate informed decision-making on the inclusion of NPBFs as part of a wider net-zero and health strategy.

Gratitude is extended to the authors who responded to inquiries and generously shared their individual data. Additionally, sincere appreciation is expressed to the FoodDB team for sharing their time-stamped data set of observations from UK supermarkets to estimate the total fruit, vegetable, legume, and nut content of foods.

Author contributions. S.N.E. contributed to conceptualization of the study, methodology, investigation, data curation, formal analysis, coding and analysis of machine learning, and writing the original draft of the article. G.H. contributed to the formal analysis (screening process), data validation, and review and editing of the manuscript. A.J.S. led the coding and analysis of machine learning, and reviewed and edited the manuscript. C.A.-C. and G.T. contributed to the literature screening process, and reviewed and edited the manuscript. R.G. reviewed and edited the manuscript. S.P. and R.P. contributed to data validation, and reviewed and edited the manuscript. P.S. contributed to conceptualization of the study, methodology, reviewed and edited the manuscript, supervised the work, acquired funding, and contributed to project administration.

Funding. This work was supported by a research grant from the National Institute for Health Research, Health Protection Research Unit PhD Studentship in Environmental Change and Health (grant NIHR200909) and the af Jochnick Foundation.

The funders had no role in the conception, design, performance, and approval of this work.

Declaration of interest. The authors have no relevant interests to declare.

Data availability. Source code for this work is available online (DOI: 10.5281/zenodo.7116157).

The following supporting information is available through the online version of this article at the publisher’s website:

Supplementary file 1 .

Supplementary file 2 .

Supplementary file 3 .

Box 1 Key Definitions

Novel plant-based foods (NPBFs): Acknowledging differences in terminology for NPBFs, for the purpose of this review, the term novel plant-based foods is used to describe plant-based (PB) drinks and PB meat, cheese, eggs, and yogurt alternatives that are of plant or fungal origin and designed to directly replace or mimic animal-based foods. This definition includes fungi-based foods (ie, mycoprotein) that biologically do not belong to the plant kingdom but are typically “designed” similarly to NPBFs as a direct replacement for animal-based foods. Here, the term excludes tofu, tempeh, and seitan because although these might be novel to some high-income settings, they have been part of traditional Asian diets for centuries and, hence, are not subject to the same challenges and evidence gap as NPBFs.

Ultraprocessed: Foods that have undergone a series of industrial techniques and processes

Minimally processed plant-based foods: Plant-based whole foods such as nuts, seeds, cereals, and legumes

Food and Agriculture Organization , UNICEF, World Food Program, World Health Organization . The state of food security and nutrition in the world 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. 2021 . Available at: https://www.fao.org/3/cb4474en/online/cb4474en.html . Accessed February 2024.

Willett W , Rockstrom J , Jonell M , et al.    Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems . Lancet . 2019 ; 393 : 447 – 492 . doi: 10.1016/S0140-6736%2818%2931788-4 .

Google Scholar

Food and Agriculture Organization , UNICEF, World Food Program, World Health Organization . The state of food security and nutrition in the world 2023. 2023 . Available at: https://www.fao.org/3/CC3017EN/online/CC3017EN.html . Accessed February 2024.

Alae-Carew C , Nicoleau S , Bird FA , et al.    The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: a systematic review . Environ Res Lett . 2020 ; 15 : 023002 . doi: 10.1088/1748-9326/ab5cc0 .

Parajuli R , Thoma G , Matlock MD.   Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: a review . Sci Total Environ . 2019 ; 650 : 2863 – 2879 . doi: 10.1016/j.scitotenv.2018.10.019 .

Wang J , Vanga S , Saxena R , et al.    Effect of climate change on the yield of cereal crops: a review . Climate . 2018 ; 6 : 41 . doi: 10.3390/cli6020041 .

Bisbis MB , Gruda N , Blanke M.   Potential impacts of climate change on vegetable production and product quality—a review . J Clean Prod . 2018 ; 170 : 1602 – 1620 . doi: 10.1016/j.jclepro.2017.09.224 .

Scheelbeek P , Bird FA , Tuomisto HL , et al.    Effect of environmental changes on vegetable and legume yields and nutritional quality . Proc Natl Acad Sci USA . 2018 ; 115 : 6804 – 6809 . doi: 10.1073/pnas.1800442115 .

Intergovernmental Panel on Climate Change ( IPCC) . Climate change 2022: impacts, adaptation and vulnerability. IPCC sixth assessment report. 2022 . Available at: https://www.ipcc.ch/report/ar6/wg2/ . Accessed February 2024.

United Nations . Sustainable development goals. Available at: https://www.un.org/en/sustainable-development-goals . Accessed June 2022.

Mendenhall E , Singer M.   The global syndemic of obesity, undernutrition, and climate change . Lancet . 2019 ; 393 : 741 . doi: 10.1016/s0140-6736(19)30310-1 .

Aggarwal A , Rehm CD , Monsivais P , et al.    Importance of taste, nutrition, cost and convenience in relation to diet quality: evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007-2010 . Prev Med . 2016 ; 90 : 184 – 192 . doi: 10.1016/j.ypmed.2016.06.030 .

Davis R , Campbell R , Hildon Z , et al.    Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review . Health Psychol Rev . 2015 ; 9 : 323 – 344 . doi: 10.1080/17437199.2014.941722 .

Markowski KL , Roxburgh S.   "If I became a vegan, my family and friends would hate me”: anticipating vegan stigma as a barrier to plant-based diets . Appetite . 2019 ; 135 : 1 – 9 . doi: 10.1016/j.appet.2018.12.040 .

Lea EJ , Crawford D , Worsley A.   Consumers' readiness to eat a plant-based diet . Eur J Clin Nutr . 2006 ; 60 : 342 – 351 . doi: 10.1038/sj.ejcn.1602320 .

Good Food Institute . U.S. retail market data for the plant-based industry. Available at: https://gfi.org/marketresearch/#comparison-to-animal-based-foods . Accessed June 2022.

Spalding N. The APAC Alternative Protein Industry Report 2021. 2021 . Available at: https://www.greenqueen.com.hk/apac-alt-protein-report-2021/ . Accessed February 2024.

Gaan K. Plant-based meat, eggs and dairy. 2020 The State of the Industry Report. 2020 . Available at: https://gfi.org/resource/plant-based-meat-eggs-and-dairy-state-of-the-industry-report/ . Accessed February 2024.

Smart Protein Project . Plant-based foods in Europe: how big is the market ? Smart Protein Plant-Based Food Sector Report. 2021 . Available at: https://smartproteinproject.eu/plant-based-food-sector-report . Accessed February 2024.

Devlin E. This raises £15m in series B funding round to fuel ongoing rapid growth. Available at: https://www.thegrocer.co.uk/fundraising/this-raises-15m-in-series-b-funding-round-to-fuel-ongoing-rapid-growth/676873.article . Accessed April 2023.

Ettinger J. Heura saw a 260% increase in international vegan meat sales in 2022. Green Queen. https://www.greenqueen.com.hk/heura-2022-international-vegan-meat-sales/ . Accessed March 2023.

Datassential Research . 2023 Food trends. FOODBYTES: trend report. 2022 . Available at: https://offers.datassential.com/2023-trends . Accessed February 2024.

Foster-Collins L. The death of vegan brands and the unlikely saviour of plant-based diets. Available at: https://www.thegrocer.co.uk/plant-based/the-death-of-vegan-brands-and-saviour-of-plant-based-diets/680057.article?utm_source=Weekly%20Shop%20(The%20Grocer)&utm_medium=email&utm_campaign=2023-06-12&c=&cid=DM1080641&bid=132435027 . Accessed June 2023.

Tatum M. Is Beyond Meat beyond hope? And what its slump says about the other plant-based players. The Grocer . July 9, 2022. Available at: https://www.thegrocer.co.uk/plant-based/is-beyond-meat-beyond-hope-and-what-its-slump-says-about-the-other-plant-based-players/669272.article . Accessed March 2023.

Good Food Institute . 2022 State of the Industry Report: plant-based meat, seafood, eggs, and dairy. 2022 . Available at: https://gfi.org/resource/plant-based-meat-eggs-and-dairy-state-of-the-industry-report/ . Accessed February 2024.

EAT, GlobeScan . Grains of Truth 2: a consumer report on healthy and sustainable food system. 2022 . Available at: https://eatforum.org/content/uploads/2022/11/EAT-Forum-Report.pdf . Accessed February 2024.

Good Food Institute . U.S. retail market insights for the plant-based industry. Available at: https://gfi.org/marketresearch/#purchase-dynamics . Accessed October 2023.

Alae-Carew C , Green R , Stewart C , et al.    The role of plant-based alternative foods in sustainable and healthy food systems: consumption trends in the UK . Sci Total Environ . 2021 ; 807 : 151041 . doi: 10.1016/j.scitotenv.2021.151041 .

Frontier F , Lichtenstein T. Plant-based meat: a healthier choice? 2020 . A comprehensive health and nutrition analysis of plant-based meat products in the Australian and New Zealand markets. Available at: https://www.foodfrontier.org/wp-content/uploads/2022/10/Plant-Based_Meat_A_Healthier_Choice-1.pdf . Accessed February 2024.

World Economic Forum . Meat: The Future series. Alternative Proteins. 2019 . Available at: https://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf . Accessed February 2024.

Sahakian M , Fuchs D , Lorek S , et al.    Advancing the concept of consumption corridors and exploring its implications . Sustainability . 2021 ; 17 : 305 – 315 . doi: 10.1080/15487733.2021.1919437 .

Noguerol AT , Pagan MJ , Garcia-Segovia P , et al.    Green or clean? Perception of clean label plant-based products by omnivorous, vegan, vegetarian and flexitarian consumers . Food Res Int . 2021 ; 149 : 110652 . doi: 10.1016/j.foodres.2021.110652 .

Mertens E , Biesbroek S , Dofkova M , et al.    Potential impact of meat replacers on nutrient quality and greenhouse gas emissions of diets in four European countries . Sustainability . 2020 ; 12 : 6838 .

Edge MS , Garrett JL.   The nutrition limitations of mimicking meat . Cereal Foods World . 2020 ; 65 : 3 . doi: 10.1094/CFW-65-4-0045 .

Paul AA , Kumar S , Kumar V , et al.    Milk analog: plant based alternatives to conventional milk, production, potential and health concerns . Crit Rev Food Sci Nutr . 2020 ; 60 : 3005 – 3023 .

Verduci E , D'Elios S , Cerrato L , et al.    Cow's milk substitutes for children: nutritional aspects of milk from different mammalian species, special formula and plant-based beverages . Nutrients   2019 ; 11 : 1739 .

Chalupa-Krebzdak S , Long CJ , Bohrer BM.   Nutrient density and nutritional value of milk and plant-based milk alternatives . Int Dairy J . 2018 ; 87 : 84 – 92 .

Kazir M , Livney YD.   Plant-based seafood analogs . Molecules . 2021 ; 26 : 1559 .

Silva ARA , Silva MMN , Ribeiro BD.   Health issues and technological aspects of plant-based alternative milk . Food Res Int . 2020 ; 131 : 108972 .

McClements DJ , Newman E , McClements IF.   Plant-based milks: a review of the science underpinning their design, fabrication, and performance . Compr Rev Food Sci Food Saf . 2019 ; 18 : 2047 – 2067 .

Hadi J , Brightwell G.   Safety of alternative proteins: technological, environmental and regulatory aspects of cultured meat, plant-based meat, insect protein and single-cell protein . Foods . 2021 ; 10 : 1226 .

Liu S , Sha L.   Nutrition and safety assessment of plant protein-based meat alternative products . Food Ferment Industr . 2021 ; 47 : 297 – 303 .

Kołodziejczak K , Onopiuk A , Szpicer A , et al.    Meat analogues in the perspective of recent scientific research: a review . Foods . 2021 ; 11 : 105 . doi: 10.3390/foods11010105 .

Lonkila A , Kaljonen M.   Promises of meat and milk alternatives: an integrative literature review on emergent research themes . Agric Hum Values . 2021 ; 38 : 625 – 639 .

Boukid F.   Plant-based meat analogues: from niche to mainstream . Eur Food Res Technol . 2020 ; 247 : 297 – 308 .

Good Food Institute . Plant-Based Meat for a Growing World. 2019 . Available at: https://gfi.org/wp-content/uploads/2021/02/GFI-Plant-Based-Meat-Fact-Sheet_Environmental-Comparison.pdf . Accessed February 2023.

Nawaz MA , Tan MV , Oiseth S , et al.    An emerging segment of functional legume-based beverages: a review . Food Rev Int . 2020 ; 38 : 1064 – 1102 .

Boukid F , Rosell CM , Rosene S , et al.    Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: present status and future perspectives . Crit Rev Food Sci Nutr . 2022 ; 62 : 6390 – 6420 .

Vatansever S , Tulbek MC , Riaz MN.   Low- and high-moisture extrusion of pulse proteins as plant-based meat ingredients: a review . Cereal Foods World . 2020 ; 65 : 12 – 14 .

Chalvon-Demersay T , Azzout-Marniche D , Arfsten J , et al.    A systematic review of the effects of plant compared with animal protein sources on features of metabolic syndrome . J Nutr . 2017 2017; 147 : 281 – 292 .

Gibbs J , Leung G-K.   The effect of plant-based and mycoprotein-based meat substitute consumption on cardiometabolic risk factors: a systematic review and meta-analysis of controlled intervention trials . Dietetics . 2023 ; 2 : 104 – 122 . doi: 10.3390/dietetics2010009 .

Silva BQ , Smetana S.   Review on milk substitutes from an environmental and nutritional point of view . Appl Food Res . 2022 ; 2 : 100105 . doi: 10.1016/j.afres.2022.100105 .

Bryant CJ.   Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products . Future Foods . 2022 ; 6 : 100174 . doi: 10.1016/j.fufo.2022.100174 .

Nájera Espinosa S , Pastorino S , Scheelbeek P. Mapping the evidence of plant-based alternative foods: a systematic literature review protocol on nutritional, health, and environmental impacts. 2022 . Available at: https://datacompass.lshtm.ac.uk/id/eprint/3015/1/Lit_Review_Protocol.pdf . Accessed December 2024.

Page MJ , Moher D , Bossuyt PM , et al.    PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews . BMJ . 2021 ; 372 : n160 . doi: 10.1136/bmj.n160 .

Chang C-C , Lin C-J.   LIBSVM: a library for support vector machines . ACM Trans Intell Syst Technol . 2011 ; 2 : 1 – 27 . doi: 10.1145/1961189.1961199 .

Pedregosa F , Varoquaux G , Gramfort A , et al.    Scikit-learn: machine learning in Python . J Mach Learn Res . 2011 ; 12 : 2825 – 2830 .

Berrang-Ford L , Sietsma AJ , Callaghan M , et al.    Systematic mapping of global research on climate and health: a machine learning review . Lancet Planet Health . 2021 ; 5 : e514 – 25 . doi: 10.1016/s2542-5196(21)00179-0 .

Renotte N. nicknochnack/Longform-Summarization-with-Hugging-Face. Available at: https://github.com/nicknochnack/Longform-Summarization-with-Hugging-Face/blob/main/LongSummarization.ipynb . Accessed September 2022.

Pistilli M. Plant-based food stocks: 10 biggest companies in 2023. Available at: https://investingnews.com/daily/life-science-investing/top-plant-based-food-stocks/ . Accessed May 2023.

Team V . The big list of vegan food companies. Available at: https://www.veganrecipeclub.org.uk/articles/big-list-vegan-food-companies/ . Accessed May 2023.

Meticulous Research . Top 10 companies in plant based food market. Available at: https://meticulousblog.org/top-10-companies-in-plant-based-food-market/ . Accessed May 2023.

Enerva K. Top plant-based food companies in the UK. Available at: https://viable.earth/plant-based-food/top-plant-based-food-companies-in-the-uk/ . Accessed May 2023.

Critical Appraisal Skills Programme . CASP checklist: CASP randomised controlled trial checklist. Available at: https://casp-uk.net/casp-tools-checklists/ . Accessed March 2023.

Harrington RA , Adhikari V , Rayner M , et al.    Nutrient composition databases in the age of big data: FoodDB, a comprehensive, real-time database infrastructure . BMJ Open . 2019 ; 9 : e026652 . doi: 10.1136/bmjopen-2018-026652 .

Reyes-Jurado F , Soto-Reyes N , Davila-Rodriguez M , et al.    Plant-based milk alternatives: types, processes, benefits, and characteristics . Food Rev Int . 2021 ; 39 : 2320 – 2351 .

Tangyu M , Muller J , Bolten CJ , et al.    Fermentation of plant-based milk alternatives for improved flavour and nutritional value . Appl Microbiol Biotechnol . 2019 ; 103 : 9263 – 9275 .

World Health Organization . Guideline: sugars intake for adults and children. World Health Organization;   2015 . Available at: https://www.who.int/publications/i/item/9789241549028 . Accessed February 2024.

World Health Organization . Salt intake. World Health Organization. Available at: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3082 . Accessed October 2022.

Sumner O , Burbridge L.   Plant-based milks: the dental perspective . Br Dent J . 2020 ; 8 : 16 – 23 .

Goudie S , Hughes I. The Broken Plate Report 2022. 2022 . Available at: https://foodfoundation.org.uk/publication/broken-plate-2022 . Accessed February 2024.

Collard KM , McCormick DP.   A nutritional comparison of cow's milk and alternative milk products . Acad Pediatr . 2020 ; 21 : 1067 – 1069 .

Marques M , Correig E , Capdevila E , et al.    Essential and non-essential trace elements in milks and plant-based drinks . Biol Trace Elem Res . 2021 ; 200 : 4524 – 4533 . doi: 10.1007/s12011-021-03021-5 .

Kazer J , Orfanos G , Gallop C. Quorn Footprint Comparison Report. Carbon Trust; 2022 . Available at: https://www.quorn.co.uk/assets/files/content/Carbon-Trust-Comparison-Report-2022.pdf .

De Marchi M , Costa A , Pozza M , et al.    Detailed characterization of plant-based burgers . Sci Rep . 2021 ; 11 : 2049 .

Zhang YY , Hughes J , Grafenauer S.   Got Mylk? The emerging role of Australian plant-based milk alternatives as a cow's milk substitute . Nutrients . 2020 ; 12 : 1254 .

Isidro V.   The nutritional limitations of plant-based beverages in infancy and childhood . Nutr Hosp . 2017 ; 34 : 1205 – 1214 .

Farsi DN , Uthumange D , Munoz Munoz J , et al.    The nutritional impact of replacing dietary meat with meat alternatives in the UK: a modelling analysis using nationally representative data . Br J Nutr . 2021 ; 127 : 1 – 31 .

Bryngelsson S , Moshtaghian H , Bianchi M , et al.    Nutritional assessment of plant-based meat analogues on the Swedish market . Int J Food Sci Nutr . 2022 ; 73 : 889 – 901 . doi: 10.1080/09637486.2022.2078286 .

Seves SM , Verkaik-Kloosterman J , Biesbroek S , et al.    Are more environmentally sustainable diets with less meat and dairy nutritionally adequate?   Public Health Nutr . 2017 ; 20 : 2050 – 2062 .

Goldstein B , Moses R , Sammons N , et al.    Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute . PLoS One . 2017 ; 12 : E 0189029 .

Kazer J , Orfanos G , Gallop C. Quorn Footprint Comparison Report. Carbon Trust; 2021 . Available at: https://www.quorn.co.uk/assets/files/content/Carbon-Trust-Comparison-Report-2021.pdf .

Allen LH , Carriquiry AL , Murphy SP.   Perspective: proposed harmonized nutrient reference values for populations . Adv Nutr . 2020 ; 11 : 469 – 483 . doi: 10.1093/advances/nmz096 .

Cherta-Murillo A , Frost GS.   The association of mycoprotein-based food consumption with diet quality, energy intake and non-communicable diseases' risk in the UK adult population using the National Diet and Nutrition Survey (NDNS) years 2008/2009-2016/2017: a cross-sectional study . Br J Nutr . 2021 ; 127 : 1685 – 1694 .

Bottin JH , Swann JR , Cropp E , et al.    Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial . Br J Nutr . 2016 ; 116 : 360 – 374 .

Coelho MOC , Monteyne AJ , Dirks ML , et al.    Daily mycoprotein consumption for 1 week does not affect insulin sensitivity or glycaemic control but modulates the plasma lipidome in healthy adults: a randomised controlled trial . Br J Nutr . 2021 ; 125 : 147 – 160 .

Crimarco A , Springfield S , Petlura C , et al.    A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine- N -oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT) . Am J Clin Nutr . 2020 ; 112 : 1188 – 1199 .

Bianchi F , Stewart C , Astbury NM , et al.    Replacing meat with alternative plant-based products (RE-MAP): a randomized controlled trial of a multicomponent behavioral intervention to reduce meat consumption . Am J Clin Nutr . 2021 ; 115 : 1357 – 1366 . doi: 10.1093/ajcn/nqab414 .

Kouw IWK , Pinckaers PJM , Le Bourgot C , et al.    Ingestion of an ample amount of meat substitute based on a lysine-enriched, plant-based protein blend stimulates postprandial muscle protein synthesis to a similar extent as an isonitrogenous amount of chicken in healthy, young men . Br J Nutr . 2021 ; 128 : 1 – 1965 . doi: 10.1017/S0007114521004906 .

Toribio-Mateas MA , Bester A , Klimenko N.   Impact of plant-based meat alternatives on the gut microbiota of consumers: a real-world study . Foods . 2021 ; 10 : 2040 . doi: 10.3390/foods10092040 .

Sun LJ , Tan KWJ , Siow PC , et al.    Soya milk exerts different effects on plasma amino acid responses and incretin hormone secretion compared with cows' milk in healthy, young men . Br J Nutr . 2016 ; 116 : 1216 – 1221 .

Dineva M , Rayman MP , Bath SC.   Iodine status of consumers of milk-alternative drinks v. cows' milk: data from the UK National Diet and Nutrition Survey . Br J Nutr . 2021 ; 126 : 28 – 36 .

Shen P , Walker GD , Yuan Y , et al.    Effects of soy and bovine milk beverages on enamel mineral content in a randomized, double-blind in situ clinical study . J Dent . 2019 ; 88 : 103160 . doi: 10.1016/j.jdent.2019.06.007 .

Farsi DN , Gallegos JL , Koutsidis G , et al.    Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial . Eur J Nutr . 2023 ; 62 : 1479 – 1492 . doi: 10.1007/s00394-023-03088-x .

Grant CA , Hicks AL.   Comparative life cycle assessment of milk and plant-based alternatives . Environ Eng Sci . 2018 ; 35 : 1235 – 1247 .

Ritchie H. Dairy vs. plant-based milk: what are the environmental impacts? Available at: https://ourworldindata.org/environmental-impact-milks . Accessed May 2022.

Saget S , Costa M , Santos CS , et al.    Substitution of beef with pea protein reduces the environmental footprint of meat balls whilst supporting health and climate stabilisation goals . J Clean Prod . 2021 ; 297 : 126447 .

Rubio NR , Xiang N , Kaplan DL.   Plant-based and cell-based approaches to meat production . Nat Commun . 2020 ; 11 : 6276 .

Julia C , Fialon M , Galan P , et al.    Are foods ‘healthy’ or ‘healthier’? Front-of-pack labelling and the concept of healthiness applied to foods . Br J Nutr . 2022 ; 127 : 948 – 952 . doi: 10.1017/S0007114521001458 .

Boeck T , Zannini E , Sahin AW , et al.    Nutritional and rheological features of lentil protein isolate for yoghurt-like application . Foods . 2021 ; 10 : 1692 .

Han H , Choi JK , Park J , et al.    Recent innovations in processing technologies for improvement of nutritional quality of soymilk . CyTA-J Food . 2021 ; 19 : 287 – 303 .

Kumari M , Kokkiligadda A , Dasriya V , et al.    Functional relevance and health benefits of soymilk fermented by lactic acid bacteria . J Appl Microbiol . 2021 ; 133 : 104 – 119 . doi: 10.1111/jam.15342 .

Jeske S , Zannini E , Lynch KM , et al.    Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute . Int J Food Microbiol . 2018 ; 286 : 31 – 36 .

Dhankhar J.   Perspective on the pros and cons, manufacturing aspects, and recent advances in non-dairy milk alternatives . J Microb Biotech Food Sci . 2023 ; 12 : e9543 . doi: 10.55251/jmbfs.9543 .

Boeck T , Sahin AW , Zannini E , et al.    Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives . Compr Rev Food Sci Food Saf . 2021 ; 20 : 3858 – 3880 .

Aydar EF , Tutuncu S , Ozcelik B.   Plant-based milk substitutes: bioactive compounds, conventional and novel processes, bioavailability studies, and health effects . J Funct Foods . 2020 ; 70 : 103975 .

Dahdouh S , Grande F , Espinosa SN , et al.    Development of the FAO/INFOODS/IZINCG global food composition database for phytate . J Food Compost Anal . 2019 ; 78 : 42 – 48 . doi: 10.1016/j.jfca.2019.01.023 .

van Vliet S , Kronberg SL , Provenza FD.   Plant-based meats, human health, and climate change . Front Sustain Food Syst . 2020 ; 4 : 128 .

WHO European Office for the Prevention and Control of Noncommunicable Diseases . Plant-based diets and their impact on health, sustainability and the environment: a review of the evidence. WHO Regional Office for Europe ; 2021 . Available at: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-4007-43766-61591 . Accessed February 2024.

van Vliet S , Bain JR , Muehlbauer MJ , et al.    A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels . Sci Rep . 2021 ; 11 : 13828 .

Neuhofer ZT , Lusk JL.   Most plant-based meat alternative buyers also buy meat: an analysis of household demographics, habit formation, and buying behavior among meat alternative buyers . Sci Rep . 2022 ; 12 : 13062 . doi: 10.1038/s41598-022-16996-5 .

Coelho MOC , Monteyne AJ , Dunlop M , et al.    Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health . Nutr Rev . 2020 ; 78 : 486 – 497 .

Derbyshire E , Ayoob KT.   Mycoprotein: nutritional and health properties . Nutr Today . 2019 ; 54 : 7 – 15 .

Souza Filho PF , Andersson D , Ferreira JA , et al.    Mycoprotein: environmental impact and health aspects . World J Microbiol Biotechnol . 2019 ; 35 : 147 .

Dunlop MV , Kilroe SP , Bowtell JL , et al.    Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: a dose-response study . Br J Nutr . 2017 ; 118 : 673 – 685 .

Otis BO , Hu FB , McCarthy G.   Can plant-based meat alternatives be part of a healthy and sustainable diet?   J Am Med Assoc . 2019 ; 322 : 1547 – 1548 .

Monteiro CA , Cannon G , Levy RB , et al.    Ultra-processed foods: what they are and how to identify them . Public Health Nutr . 2019 ; 22 : 936 – 941 . doi: 10.1017/S1368980018003762 .

Pagliai G , Dinu M , Madarena MP , et al.    Consumption of ultra-processed foods and health status: a systematic review and meta-analysis . Br J Nutr . 2021 ; 125 : 308 – 318 . doi: 10.1017/S0007114520002688 .

Carlsson Kanyama A , Hedin B , Katzeff C.   Differences in environmental impact between plant-based alternatives to dairy and dairy products: a systematic literature review . Sustainability . 2021 ; 13 : 12599 . doi: 10.3390/su132212599 .

Li Y.   Feeding the future: plant-based meat for global food security and environmental sustainability . Cereal Foods World . 2020 ; 65 : 8 – 11 .

Santo RE , Kim BF , Goldman SE , et al.    Considering plant-based meat substitutes and cell-based meats: a public health and food systems perspective . Front Sustain Food Syst . 2020 ; 4 : 134 .

Jeske S , Zannini E , Arendt EK.   Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes . Plant Foods Hum Nutr . 2017 ; 72 : 26 – 33 .

Jaaskelainen T , Itkonen ST , Lundqvist A , et al.    The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data . Am J Clin Nutr . 2017 ; 105 : 1512 – 1520 . doi: 10.3945/ajcn.116.151415 .

  • alcoholic beverages
  • micronutrients
  • meat substitutes

Supplementary data

Email alerts, citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1753-4887
  • Print ISSN 0029-6643
  • Copyright © 2024 International Life Sciences Institute
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Advancing social justice, promoting decent work ILO is a specialized agency of the United Nations

Migrated Content

The country briefs map the key legal provisions dealing with migrant workers in eight Arab countries, summarizing the legal rules about who pays for recruitment, whether passport confiscation is prohibited by law, minimum working conditions including wages, working hours and rest periods, how to lodge grievances, and brief details of each country’s sponsorship regime.

Factsheets:

  • Bahrain: Regulatory framework governing migrant workers
  • Jordan: Regulatory framework governing migrant workers
  • Saudi Arabia: Regulatory framework governing migrant workers
  • Kuwait: Regulatory framework governing migrant workers
  • Lebanon: Regulatory framework governing migrant workers
  • Oman: Regulatory framework governing migrant workers
  • Qatar: Regulatory framework governing migrant workers
  • United Arab Emirates: Regulatory framework governing migrant workers

FAIRWAY Banner

The FAIRWAY Programme

COMMENTS

  1. The Evidence-Based Practice of Applied Behavior Analysis

    Evidence-based practice (EBP) is a model of professional decision-making in which practitioners integrate the best available evidence with client values/context and clinical expertise in order to provide services for their clients. This framework provides behavior analysts with a structure for pervasive use of the best available evidence in the ...

  2. Mapping the Landscape of Behavioral Theories: Systematic Literature Review

    This article will first explain the methodology of the systematic literature review and provide a conceptualization of the type of behavior. Then, it will present a comprehensive list of the sixty-two behavioral theories, classification, and mapping of the theories in a diagram by disciplines of origin and an analysis of the selected literature.

  3. Understanding behavior to understand behavior change: a literature review

    This literature review attempts to provide a foundation for behavior‐related discussions in environmental and conservation education. A number of the behavior theories, concepts and models discussed in this review have been explored extensively elsewhere; therefore, this review is not exhaustive, but rather is intended to be broadly ...

  4. Consumer Behavior Research: A Synthesis of the Recent Literature

    Inevitably, these changes lead to changed consumer behavior studies by which, when, how, and why the topics are studied. Like any other discipline, systematic analysis of the knowledge development status of consumer behavior field is critical in ensuring its future growth (Williams & Plouffe, 2007).It is of a greater importance for a field of research such as consumer behavior that, as ...

  5. A Literature Review: Applied Behavior Analysis and Performance; the

    twofold; to assess and analyze the current research for applied behavior analysis and sports and to use what literature is already established and systematically set the framework for future avenues of research and support a strong insert of applied behavior analysis into the world of sports as a whole.

  6. Mapping the field of behavioural biases: a literature review using

    Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the-art and identifies significant gaps ...

  7. Ethical Behavior Analysis: Evidence-Based Practice as a Framework for

    Definition and Brief History. EBP is a commonly used term in the field of ABA, and discussions of EBP have been increasing in recent years. Several articles have explicitly discussed the role of EBP in behavior analysis (e.g., DiGennaro Reed & Reed, 2008; Slocum et al., 2014; Smith, 2013; Spencer et al., 2012).Slocum et al. defined the EBP of ABA as "a decision-making process that integrates ...

  8. PDF Mapping the field of behavioural biases: a literature review using

    existing literature on behavioural biases. Through keyword and reference search-ing approaches, the study retrieved 212 research papers from the Scopus database. Application of performance analysis techniques has helped in identication of inu-ential journals, prolic authors, countries and aliations enriching the literature on behavioural biases.

  9. A systematic review of behaviour analytic interventions for young

    Based on several comprehensive systematic and narrative reviews of large bodies of research such as the review conducted by the National Autism Center (NAC 2015) and by the National Professional Development Center (NPDC) (Odom et al. 2010; Wong et al. 2015), interventions using applied behaviour analysis (ABA) principles, often referred to as behaviour analytic interventions, are currently ...

  10. Positive behaviour support: a systematic literature review of the

    Introduction. Positive behaviour support (PBS) is a multicomponent framework for supporting people with intellectual disabilities who engage in behaviour commonly described as challenging (Gore et al., Citation 2013).PBS is one of many applications of the science of behaviour analysis (NICE, Citation 2015).Like other natural sciences, behaviour analysis has three interconnected branches: the ...

  11. Full article: A systematic review of behaviour analytic processes and

    A systematic review was conducted of the literature on conditioned reinforcement that identified 33 relevant articles (published between 2002 and 2017). This article reports on the content analysis and quality of evidence and offers a summary of the findings reported in these papers.

  12. Research Guides: Applied Behavior Analysis: Literature Review

    Basics of a Literature Review. A literature review may be conducted in order to inform practice and/or policy, serve as a basic element in a thesis or dissertation or as part of a proposal to obtain funding. The process can be divided into a series of steps: Choose a topic. Look at recent literature for ideas and do a bit of preliminary ...

  13. Mapping the field of behavioural biases: a literature review using

    Jain et al. (2021) analysed the literature on behavioural biases using bibliometric analysis and content analysis to provide insights and a roadmap. Gupta and Shrivastava (2022) examined the ...

  14. Mapping the field of behavioural biases: a literature review

    Downloadable (with restrictions)! Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the ...

  15. Systematic Literature Review: Behavioural Biases as the ...

    This systematic literature review explores the role of behavioural biases in driving herding behaviour in global stock markets. Analysing Scopus and SSCI-indexed research articles from January 2020 to November 2022, this study identifies five critical behavioural biases—representativeness, anchoring, availability, gambler fallacy, and overconfidence—as significant determinants of herding.

  16. Values, Attitudes and the Behaviour Paradigm: A Systematic Literature

    Additionally, we summarize the conditions under which an individual's internal values activate and how they influence their actions. The analysis of the included articles concludes that basic human values, directly and indirectly, impact attitudes and behaviours regardless of the analytical approaches and contextual factors.

  17. A systematic review of ordinary people, behavioural financial biases

    The literature review methodology and in particular systematic reviews have been used with latitude in Behavioural Finance research, in particular in field analysis. Kumer and Goyal ( Citation 2015 ) published a timely systematic literature review about behavioural biases, followed by the study by Zahera and Bansal ( Citation 2018 ) about ...

  18. (PDF) A Literature Review of Behavioural Finance

    A Literature Review of Behavioural Finance. By Bachar FAKHRYa†. Abstract. The efficient market hypothesis and behavioural finance theory have been the. cornerstone of modern asset pricing for ...

  19. Sustainability

    This paper empirically examines whether integrating entrepreneurial abilities with the theory of perceived behaviour positively influences Sustainable-Development-Goal-8-driven sustainable entrepreneurial intentions (SDG-8 SEIs). The data used in this study were gathered from 540 students from top-ranked Indian engineering colleges that offer entrepreneurship courses and have access to company ...

  20. Mapping the field of behavioural biases: a literature review using

    Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the-art and identifies significant gaps ...

  21. Sustainability

    Based on a systematic literature review, the data for this study came from a review of 35 documents between 2019 and 2024. ... The analysis revealed five central themes: (1) sustainability and innovation; (2) authenticity and experience; (3) economic and community impact; (4) cultural identity expression; and (5) consumer behaviour and ...

  22. Behavioral Finance Experiments: A Recent Systematic Literature Review

    This article aims to elaborate a systematic literature review (SLR) on the subject of experiments in behavioral finance, including papers published between 2014 and 2018. Methodology involved the careful selection of articles published in Web of Science and Scopus databases, and bibliometric analysis was applied.

  23. Frontiers

    3 Results and analysis 3.1 The outcomes of literature retrieval and the fundamental circumstances behind literature inclusion. In adherence to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines, the study initiated with a computer-based database search, resulting in the retrieval of 742 studies.

  24. (PDF) Mapping the field of behavioural biases: a literature review

    Therefore, This Study is a Method to Provide a Systematic and Holistic Review of Bibliometric Analysis Academic Literature Related To Behavioural Financial (Bf). Foster Development of Work into Coordinated Efforts, It is Necessary to Understand Interesting Topics and Expand Collaborative Networks.

  25. Mapping the evidence of novel plant-based foods: a systematic review of

    To capture grey literature in a systematic way, a manual search was conducted on Google (see Supplementary file 1, section 2.3, ... In addition to the review component, a cross-sectional analysis was conducted to examine the total fruit, vegetable, legume, and nut content (percentage estimate) of each type of NPBF sold in the United Kingdom. ...

  26. How Social Media Influencers Impact Consumer Behaviour? Systematic

    This comprehensive review of literature intends to demonstrate the various impacts of SMIs on consumer behaviour, particularly about consumer decision-making, consumer attention, consumer brand admiration, consumer self-expression and consumer purchase intention.

  27. Country briefs of the regulatory frameworks governing migrant workers

    By outlining both the provisions that apply in the private sector (where most migrant workers are employed) as well as those relating to domestic workers specifically, the factsheets are intended to be a useful summary of relevant legislation, for use by labour attaches, trade unions and other organizations seeking to support migrant workers from an advocacy or case-work perspective.