Learn C practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn c interactively, c introduction.

  • Keywords & Identifier
  • Variables & Constants
  • C Data Types
  • C Input/Output
  • C Operators
  • C Introduction Examples

C Flow Control

  • C if...else
  • C while Loop
  • C break and continue
  • C switch...case
  • C Programming goto
  • Control Flow Examples

C Functions

  • C Programming Functions
  • C User-defined Functions
  • C Function Types
  • C Recursion
  • C Storage Class
  • C Function Examples
  • C Programming Arrays
  • C Multi-dimensional Arrays
  • C Arrays & Function
  • C Programming Pointers
  • C Pointers & Arrays
  • C Pointers And Functions
  • C Memory Allocation
  • Array & Pointer Examples

C Programming Strings

  • C Programming String
  • C String Functions
  • C String Examples

Structure And Union

  • C Structure
  • C Struct & Pointers
  • C Struct & Function
  • C struct Examples

C Programming Files

  • C Files Input/Output

C Files Examples

Additional Topics

  • C Enumeration
  • C Preprocessors
  • C Standard Library
  • C Programming Examples
  • Calculate Average Using Arrays
  • Find Largest Element in an Array

C Multidimensional Arrays

  • Access Array Elements Using Pointer

Relationship Between Arrays and Pointers

  • Store Information of Students Using Structure

C arrays

An array is a variable that can store multiple values. For example, if you want to store 100 integers, you can create an array for it.

How to declare an array?

For example,

Here, we declared an array, mark , of floating-point type. And its size is 5. Meaning, it can hold 5 floating-point values.

It's important to note that the size and type of an array cannot be changed once it is declared.

Access Array Elements

You can access elements of an array by indices.

Suppose you declared an array mark as above. The first element is mark[0] , the second element is mark[1] and so on.

C Array declaration

Few keynotes :

  • Arrays have 0 as the first index, not 1. In this example, mark[0] is the first element.
  • If the size of an array is n , to access the last element, the n-1 index is used. In this example, mark[4]
  • Suppose the starting address of mark[0] is 2120d . Then, the address of the mark[1] will be 2124d . Similarly, the address of mark[2] will be 2128d and so on. This is because the size of a float is 4 bytes.

How to initialize an array?

It is possible to initialize an array during declaration. For example,

You can also initialize an array like this.

Here, we haven't specified the size. However, the compiler knows its size is 5 as we are initializing it with 5 elements.

Initialize an array in C programming

Change Value of Array elements

Input and output array elements.

Here's how you can take input from the user and store it in an array element.

Here's how you can print an individual element of an array.

Example 1: Array Input/Output

Here, we have used a  for loop to take 5 inputs from the user and store them in an array. Then, using another  for loop, these elements are displayed on the screen.

Example 2: Calculate Average

Here, we have computed the average of n numbers entered by the user.

Access elements out of its bound!

Suppose you declared an array of 10 elements. Let's say,

You can access the array elements from testArray[0] to testArray[9] .

Now let's say if you try to access testArray[12] . The element is not available. This may cause unexpected output (undefined behavior). Sometimes you might get an error and some other time your program may run correctly.

Hence, you should never access elements of an array outside of its bound.

Multidimensional arrays

In this tutorial, you learned about arrays. These arrays are called one-dimensional arrays.

In the next tutorial, you will learn about multidimensional arrays (array of an array) .

Table of Contents

  • C Arrays (Introduction)
  • Declaring an Array
  • Access array elements
  • Initializing an array
  • Change Value of Array Elements
  • Array Input/Output
  • Example: Calculate Average
  • Array Elements Out of its Bound

Video: C Arrays

Sorry about that.

Related Tutorials

Pass arrays to a function in C

Home » Learn C Programming from Scratch » C Assignment Operators

C Assignment Operators

Summary : in this tutorial, you’ll learn about the C assignment operators and how to use them effectively.

Introduction to the C assignment operators

An assignment operator assigns the vale of the right-hand operand to the left-hand operand. The following example uses the assignment operator (=) to assign 1 to the counter variable:

After the assignmment, the counter variable holds the number 1.

The following example adds 1 to the counter and assign the result to the counter:

The = assignment operator is called a simple assignment operator. It assigns the value of the left operand to the right operand.

Besides the simple assignment operator, C supports compound assignment operators. A compound assignment operator performs the operation specified by the additional operator and then assigns the result to the left operand.

The following example uses a compound-assignment operator (+=):

The expression:

is equivalent to the following expression:

The following table illustrates the compound-assignment operators in C:

  • A simple assignment operator assigns the value of the left operand to the right operand.
  • A compound assignment operator performs the operation specified by the additional operator and then assigns the result to the left operand.

CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Decision Making
  • C - if statement
  • C - if...else statement
  • C - nested if statements
  • C - switch statement
  • C - nested switch statements
  • C - While loop
  • C - Functions
  • C - Main Functions
  • C - Return Statement
  • C - Scope Rules
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointer Arithmetics
  • C - Passing Pointers to Functions
  • C - Strings
  • C - Array of Strings
  • C - Structures
  • C - Structures and Functions
  • C - Arrays of Structures
  • C - Pointers to Structures
  • C - Self-Referential Structures
  • C - Nested Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Recursion
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as a simple assignment operator in C. In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple assignment operator (=)

The = operator is the most frequently used operator in C. As per ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed. You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented assignment operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression a+=b has the same effect of performing a+b first and then assigning the result back to the variable a.

Similarly, the expression a<<=b has the same effect of performing a<<b first and then assigning the result back to the variable a.

Here is a C program that demonstrates the use of assignment operators in C:

When you compile and execute the above program, it produces the following result −

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Assignment operator in c.

' src=

Last Updated on June 23, 2023 by Prepbytes

assignment operator for array c

This type of operator is employed for transforming and assigning values to variables within an operation. In an assignment operation, the right side represents a value, while the left side corresponds to a variable. It is essential that the value on the right side has the same data type as the variable on the left side. If this requirement is not fulfilled, the compiler will issue an error.

What is Assignment Operator in C language?

In C, the assignment operator serves the purpose of assigning a value to a variable. It is denoted by the equals sign (=) and plays a vital role in storing data within variables for further utilization in code. When using the assignment operator, the value present on the right-hand side is assigned to the variable on the left-hand side. This fundamental operation allows developers to store and manipulate data effectively throughout their programs.

Example of Assignment Operator in C

For example, consider the following line of code:

Types of Assignment Operators in C

Here is a list of the assignment operators that you can find in the C language:

Simple assignment operator (=): This is the basic assignment operator, which assigns the value on the right-hand side to the variable on the left-hand side.

Addition assignment operator (+=): This operator adds the value on the right-hand side to the variable on the left-hand side and assigns the result back to the variable.

x += 3; // Equivalent to x = x + 3; (adds 3 to the current value of "x" and assigns the result back to "x")

Subtraction assignment operator (-=): This operator subtracts the value on the right-hand side from the variable on the left-hand side and assigns the result back to the variable.

x -= 4; // Equivalent to x = x – 4; (subtracts 4 from the current value of "x" and assigns the result back to "x")

* Multiplication assignment operator ( =):** This operator multiplies the value on the right-hand side with the variable on the left-hand side and assigns the result back to the variable.

x = 2; // Equivalent to x = x 2; (multiplies the current value of "x" by 2 and assigns the result back to "x")

Division assignment operator (/=): This operator divides the variable on the left-hand side by the value on the right-hand side and assigns the result back to the variable.

x /= 2; // Equivalent to x = x / 2; (divides the current value of "x" by 2 and assigns the result back to "x")

Bitwise AND assignment (&=): The bitwise AND assignment operator "&=" performs a bitwise AND operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x &= 3; // Binary: 0011 // After bitwise AND assignment: x = 1 (Binary: 0001)

Bitwise OR assignment (|=): The bitwise OR assignment operator "|=" performs a bitwise OR operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x |= 3; // Binary: 0011 // After bitwise OR assignment: x = 7 (Binary: 0111)

Bitwise XOR assignment (^=): The bitwise XOR assignment operator "^=" performs a bitwise XOR operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x ^= 3; // Binary: 0011 // After bitwise XOR assignment: x = 6 (Binary: 0110)

Left shift assignment (<<=): The left shift assignment operator "<<=" shifts the bits of the value on the left-hand side to the left by the number of positions specified by the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x <<= 2; // Binary: 010100 (Shifted left by 2 positions) // After left shift assignment: x = 20 (Binary: 10100)

Right shift assignment (>>=): The right shift assignment operator ">>=" shifts the bits of the value on the left-hand side to the right by the number of positions specified by the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x >>= 2; // Binary: 101 (Shifted right by 2 positions) // After right shift assignment: x = 5 (Binary: 101)

Conclusion The assignment operator in C, denoted by the equals sign (=), is used to assign a value to a variable. It is a fundamental operation that allows programmers to store data in variables for further use in their code. In addition to the simple assignment operator, C provides compound assignment operators that combine arithmetic or bitwise operations with assignment, allowing for concise and efficient code.

FAQs related to Assignment Operator in C

Q1. Can I assign a value of one data type to a variable of another data type? In most cases, assigning a value of one data type to a variable of another data type will result in a warning or error from the compiler. It is generally recommended to assign values of compatible data types to variables.

Q2. What is the difference between the assignment operator (=) and the comparison operator (==)? The assignment operator (=) is used to assign a value to a variable, while the comparison operator (==) is used to check if two values are equal. It is important not to confuse these two operators.

Q3. Can I use multiple assignment operators in a single statement? No, it is not possible to use multiple assignment operators in a single statement. Each assignment operator should be used separately for assigning values to different variables.

Q4. Are there any limitations on the right-hand side value of the assignment operator? The right-hand side value of the assignment operator should be compatible with the data type of the left-hand side variable. If the data types are not compatible, it may lead to unexpected behavior or compiler errors.

Q5. Can I assign the result of an expression to a variable using the assignment operator? Yes, it is possible to assign the result of an expression to a variable using the assignment operator. For example, x = y + z; assigns the sum of y and z to the variable x.

Q6. What happens if I assign a value to an uninitialized variable? Assigning a value to an uninitialized variable will initialize it with the assigned value. However, it is considered good practice to explicitly initialize variables before using them to avoid potential bugs or unintended behavior.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Null character in c, ackermann function in c, median of two sorted arrays of different size in c, number is palindrome or not in c, implementation of queue using linked list in c, c program to replace a substring in a string.

cppreference.com

Copy assignment operator.

A copy assignment operator is a non-template non-static member function with the name operator = that can be called with an argument of the same class type and copies the content of the argument without mutating the argument.

[ edit ] Syntax

For the formal copy assignment operator syntax, see function declaration . The syntax list below only demonstrates a subset of all valid copy assignment operator syntaxes.

[ edit ] Explanation

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type, the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B & or const volatile B & ;
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M & or const volatile M & .

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) .

Due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument.

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

The implicitly-declared (or defaulted on its first declaration) copy assignment operator has an exception specification as described in dynamic exception specification (until C++17) noexcept specification (since C++17)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used or needed for constant evaluation (since C++14) . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types, the operator performs member-wise copy assignment of the object's direct bases and non-static data members, in their initialization order, using built-in assignment for the scalars, memberwise copy-assignment for arrays, and copy assignment operator for class types (called non-virtually).

[ edit ] Deleted copy assignment operator

An implicitly-declared or explicitly-defaulted (since C++11) copy assignment operator for class T is undefined (until C++11) defined as deleted (since C++11) if any of the following conditions is satisfied:

  • T has a non-static data member of a const-qualified non-class type (or possibly multi-dimensional array thereof).
  • T has a non-static data member of a reference type.
  • T has a potentially constructed subobject of class type M (or possibly multi-dimensional array thereof) such that the overload resolution as applied to find M 's copy assignment operator
  • does not result in a usable candidate, or
  • in the case of the subobject being a variant member , selects a non-trivial function.

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • it is not user-provided (meaning, it is implicitly-defined or defaulted);
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the copy assignment operator selected for every direct base of T is trivial;
  • the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial.

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Eligible copy assignment operator

Triviality of eligible copy assignment operators determines whether the class is a trivially copyable type .

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move ), and selects the copy assignment if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

See assignment operator overloading for additional detail on the expected behavior of a user-defined copy-assignment operator.

[ edit ] Example

[ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

  • converting constructor
  • copy constructor
  • copy elision
  • default constructor
  • aggregate initialization
  • constant initialization
  • copy initialization
  • default initialization
  • direct initialization
  • initializer list
  • list initialization
  • reference initialization
  • value initialization
  • zero initialization
  • move assignment
  • move constructor
  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 2 February 2024, at 15:13.
  • This page has been accessed 1,333,785 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • Windows Programming
  • UNIX/Linux Programming
  • General C++ Programming
  • copy assignment operator - arrays

  copy assignment operator - arrays

assignment operator for array c

  • C++ Classes and Objects
  • C++ Polymorphism
  • C++ Inheritance
  • C++ Abstraction
  • C++ Encapsulation
  • C++ OOPs Interview Questions
  • C++ OOPs MCQ
  • C++ Interview Questions
  • C++ Function Overloading
  • C++ Programs
  • C++ Preprocessor
  • C++ Templates
  • Operator Overloading in C++
  • Overloading stream insertion (<>) operators in C++
  • Overloading New and Delete operator in c++
  • How to Overload == Operator in C++?
  • Operator overloading in C++ to print contents of vector, map, pair, ..
  • Overloading the Comma Operator
  • Increment (++) and Decrement (--) Operator Overloading in C++
  • Constructor Overloading in C++
  • Functions that cannot be overloaded in C++
  • How to convert a class to another class type in C++?
  • C++ program to compare two Strings using Operator Overloading
  • C++ Assignment Operator Overloading
  • Function Overloading and Return Type in C++
  • Types of Operator Overloading in C++
  • Function Overloading vs Function Overriding in C++
  • C++ map having key as a user define data type
  • Function overloading and const keyword
  • Overloading Relational Operators in C++
  • Signal Handling in C++

Overloading Subscript or array index operator [] in C++

The Subscript or Array Index Operator is denoted by ‘[]’. This operator is generally used with arrays to retrieve and manipulate the array elements. This is a binary or n-ary operator and is represented in two parts:

  • postfix/primary expression

The postfix expression, also known as the primary expression, is a pointer value such as array or identifiers and the second expression is an integral value. In the second expression we can also include the enumerated values.

The primary-expression followed by the subscript operator is the pointer and it can be an integral value but the one must keep in mind that one of expression among two expressions must be a pointer value and it does not matter whether the second one is of an integral order or not.

Explanation:

In the above example both “cout” statement provides similar output due to the exclusive property of the subscript operator. The compiler reads both the statement in a similar way, so there is no difference between the

*(name + 5)

*(5 + name)

Positive and Negative subscripts

The first element of an array is stored at index 0. The range of a C++ array is from array[0] to array[size – 1]. However, C++ supports positive and negative subscripts. Negative subscripts must fall within array boundaries; if they do not, the results are unpredictable. The following code shows positive and negative array subscripts:

The negative subscript in the last line can produce a run-time error because it points to an address -256 positions which can be lower in memory than the origin of the array. The pointer midArray is initialized to the middle of intArray; it is therefore possible (but not recommended) to use both positive and negative array indices simultaneously. Array subscript errors do not generate compile-time errors, but they might yield unpredictable results. We have introduced

operator overloading

. In this post overloading of index operator [] is discussed. Following are some useful facts about overloading of []. 1) Overloading of [] may be useful when we want to check for index out of bound. 2) We must return by reference in function because an expression like “arr[i]” can be used an lvalue. Following is C++ program to demonstrate overloading of array index operator [].

Please Login to comment...

  • cpp-operator-overloading
  • cpp-overloading
  • 10 Best Tools to Convert DOC to DOCX
  • How To Summarize PDF Documents Using Google Bard for Free
  • Best free Android apps for Meditation and Mindfulness
  • TikTok Is Paying Creators To Up Its Search Game
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Assignment Operators in C/C++

    assignment operator for array c

  2. Assignment Operators in C

    assignment operator for array c

  3. Assignment Operators in C » PREP INSTA

    assignment operator for array c

  4. C programming +=

    assignment operator for array c

  5. [100% Working Code]

    assignment operator for array c

  6. Assignment Operators in C++

    assignment operator for array c

VIDEO

  1. JavaScript Destructuring & Rest Operator

  2. Operators in C++

  3. How to Assign and Re-assign Values to Arrays in C++

  4. Augmented assignment operators in C

  5. Arrays in C Language || Array Types || Sum of all digits using array || C Tutorial || #ctutorial

  6. C++ Assignment Operators Practice coding

COMMENTS

  1. c++

    The default assignment semantics are specified in clause 28 of § 12.8 [class.copy]. Specifically, the object's data members are assigned one by one. In the case of an array, this the array's elements are assigned one by one. The implicitly-defined copy/move assignment operator for a non-union class X performs memberwise copy- /move assignment ...

  2. Assignment Operators in C

    Different types of assignment operators are shown below: 1. "=": This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example: 2. "+=": This operator is combination of '+' and '=' operators.

  3. C Arrays

    We can update the value of an element at the given index i in a similar way to accessing an element by using the array subscript operator [ ] and assignment operator =. array_name [i] = new_value; C Array Traversal. Traversal is the process in which we visit every element of the data structure. For C array traversal, we use loops to iterate ...

  4. C Arrays (With Examples)

    C Comments; C Operators; C Introduction Examples; C Flow Control. C if...else; C for Loop; C while Loop; C break and continue; C switch...case; C Programming goto; Control Flow Examples; ... Arrays in C. An array is a variable that can store multiple values. For example, if you want to store 100 integers, you can create an array for it.

  5. C Assignment Operators

    The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators: Operator Operation Performed = ... The left operand must not be an array, a function, or a constant. The specific conversion path, which depends on the two types, is outlined in detail in Type Conversions.

  6. C Assignment Operators

    Code language:C++(cpp) The = assignment operator is called a simple assignment operator. It assigns the value of the left operand to the right operand. Besides the simple assignment operator, C supports compound assignment operators. A compound assignment operator performs the operation specified by the additional operator and then assigns the ...

  7. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  8. Assignment operators

    Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs . Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non ...

  9. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  10. Assignment Operators in C

    Simple assignment operator. Assigns values from right side operands to left side operand. C = A + B will assign the value of A + B to C. +=. Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand. C += A is equivalent to C = C + A. -=.

  11. 21.12

    21.12 — Overloading the assignment operator. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  12. Assignment Operator in C

    In C, the assignment operator serves the purpose of assigning a value to a variable. It is denoted by the equals sign (=) and plays a vital role in storing data within variables for further utilization in code. When using the assignment operator, the value present on the right-hand side is assigned to the variable on the left-hand side.

  13. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  14. C++ Assignment Operator Overloading

    The assignment operator,"=", is the operator used for Assignment. It copies the right value into the left value. Assignment Operators are predefined to operate only on built-in Data types. Assignment operator overloading is binary operator overloading. Overloading assignment operator in C++ copies all values of one object to another object.

  15. What is the assignment-expression in array brackets in C?

    And for the comma operator with lowest precedence of all, the syntax is actually: expression: assignment-expression. expression , assignment-expression. That is, the syntax for an expression in C. Now for some reason, C99 apparently didn't want to allow comma operators inside []. I don't know why - perhaps it would make qualified/static array ...

  16. copy assignment operator

    What you have above does not work on C arrays, they can't use the assignment operator. If they could, it would, presumably, work just like integers: int a; int b; a = b; //b still exists, of course, and still has its value! it would be unusual to make a custom operator for any type (arrays or not) that self-destructed the right hand side ...

  17. Assignment Operators In C++

    In C++, the addition assignment operator (+=) combines the addition operation with the variable assignment allowing you to increment the value of variable by a specified expression in a concise and efficient way. Syntax. variable += value; This above expression is equivalent to the expression: variable = variable + value; Example.

  18. Overloading Subscript or array index operator [] in C++

    Overloading Subscript or array index operator [] in C++. The Subscript or Array Index Operator is denoted by ' []'. This operator is generally used with arrays to retrieve and manipulate the array elements. This is a binary or n-ary operator and is represented in two parts: The postfix expression, also known as the primary expression, is a ...

  19. c++

    13. My understanding is that the default copy assignment operator performs memberwise copy, and that for array members (not pointer-to-array members) that entailed elementwise copy of the array. Yes. This is correct. Your problem is not with the copy assignment operator (unless you have found some unusual compiler bug, which is unlikely). Share.