Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

2.1: Basics of Kinematics

  • Last updated
  • Save as PDF
  • Page ID 14438

Defining Kinematics

Kinematics is the study of the motion of points, objects, and groups of objects without considering the causes of its motion.

learning objectives

  • Define kinematics

Kinematics is the branch of classical mechanics that describes the motion of points, objects and systems of groups of objects, without reference to the causes of motion (i.e., forces ). The study of kinematics is often referred to as the “geometry of motion.”

Objects are in motion all around us. Everything from a tennis match to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your veins. Even in inanimate objects there is continuous motion in the vibrations of atoms and molecules. Interesting questions about motion can arise: how long will it take for a space probe to travel to Mars? Where will a football land if thrown at a certain angle? An understanding of motion, however, is also key to understanding other concepts in physics. An understanding of acceleration, for example, is crucial to the study of force.

To describe motion, kinematics studies the trajectories of points, lines and other geometric objects, as well as their differential properties (such as velocity and acceleration). Kinematics is used in astrophysics to describe the motion of celestial bodies and systems; and in mechanical engineering, robotics and biomechanics to describe the motion of systems composed of joined parts (such as an engine, a robotic arm, or the skeleton of the human body).

A formal study of physics begins with kinematics. The word “kinematics” comes from a Greek word “kinesis” meaning motion, and is related to other English words such as “cinema” (movies) and “kinesiology” (the study of human motion). Kinematic analysis is the process of measuring the kinematic quantities used to describe motion. The study of kinematics can be abstracted into purely mathematical expressions, which can be used to calculate various aspects of motion such as velocity, acceleration, displacement, time, and trajectory.

Kinematics of a particle trajectory : Kinematic equations can be used to calculate the trajectory of particles or objects. The physical quantities relevant to the motion of a particle include: mass m, position r, velocity v, acceleration a.

Reference Frames and Displacement

In order to describe an object’s motion, you need to specify its position relative to a convenient reference frame.

  • Evaluate displacement within a frame of reference.

In order to describe the motion of an object, you must first describe its position — where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of objects related to its position to or from Earth. Mathematically, the position of an object is generally represented by the variable x .

Frames of Reference

There are two choices you have to make in order to define a position variable x . You have to decide where to put x = 0 and which direction will be positive. This is referred to as choosing a coordinate system, or choosing a frame of reference. As long as you are consistent, any frame is equally valid. But you don’t want to change coordinate systems in the middle of a calculation. Imagine sitting in a train in a station when suddenly you notice that the station is moving backward. Most people would say that they just failed to notice that the train was moving — it only seemed like the station was moving. But this shows that there is a third arbitrary choice that goes into choosing a coordinate system: valid frames of reference can differ from each other by moving relative to one another. It might seem strange to use a coordinate system moving relative to the earth — but, for instance, the frame of reference moving along with a train might be far more convenient for describing things happening inside the train. Frames of reference are particularly important when describing an object’s displacement.

FRAMES OF REFERENCE by Professor Hume and Professor Donald Ivey of the University of Toronto

In this classic film, Professors Hume and Ivey cleverly illustrate reference frames and distinguish between fixed and moving frames of reference.

Frames of Reference (1960) Educational Film : Frames of Reference is a 1960 educational film by Physical Sciences Study Committee. The film was made to be shown in high school physics courses. In the film University of Toronto physics professors Patterson Hume and Donald Ivey explain the distinction between inertial and nonintertial frames of reference, while demonstrating these concepts through humorous camera tricks. For example, the film opens with Dr. Hume, who appears to be upside down, accusing Dr. Ivey of being upside down. Only when the pair flip a coin does it become obvious that Dr. Ivey — and the camera — are indeed inverted. The film’s humor serves both to hold students’ interest and to demonstrate the concepts being discussed. This PSSC film utilizes a fascinating set consisting of a rotating table and furniture occupying surprisingly unpredictable spots within the viewing area. The fine cinematography by Abraham Morochnik, and funny narration by University of Toronto professors Donald Ivey and Patterson Hume is a wonderful example of the fun a creative team of filmmakers can have with a subject that other, less imaginative types might find pedestrian. Producer: Richard Leacock Production Company: Educational Development Corp. Sponsor: Eric Prestamon

Displacement

Displacement is the change in position of an object relative to its reference frame. For example, if a car moves from a house to a grocery store, its displacement is the relative distance of the grocery store to the reference frame, or the house. The word “displacement” implies that an object has moved or has been displaced. Displacement is the change in position of an object and can be represented mathematically as follows:

\[\mathrm{Δx=x_f−x_0}\]

where \(\Delta x\) is displacement, \(x_f\) is the final position, and \(x_0\) is the initial position.

shows the importance of using a frame of reference when describing the displacement of a passenger on an airplane.

figure-02-01-02.jpeg

Displacement in Terms of Frame of Reference : A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by x. The -4.0m displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as long as the arrow representing the displacement of the professor (he moves twice as far).

Introduction to Scalars and Vectors

A vector is any quantity that has both magnitude and direction, whereas a scalar has only magnitude.

  • Distinguish the difference between scalars and vectors

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude, distance is defined by magnitude alone. Displacement is an example of a vector quantity. Distance is an example of a scalar quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h east and a force of 500 newtons straight down.

Scalars and Vectors : Mr. Andersen explains the differences between scalar and vectors quantities. He also uses a demonstration to show the importance of vectors and vector addition.

In mathematics, physics, and engineering, a vector is a geometric object that has a magnitude (or length) and direction and can be added to other vectors according to vector algebra. The direction of a vector in one-dimensional motion is given simply by a plus (+) or minus (−) sign. A vector is frequently represented by a line segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B, as shown in.

39e7082a0ab934de189ee93215.png

Vector representation : A vector is frequently represented by a line segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B.

Some physical quantities, like distance, either have no direction or no specified direction. In physics, a scalar is a simple physical quantity that is not changed by coordinate system rotations or translations. It is any quantity that can be expressed by a single number and has a magnitude, but no direction. For example, a 20ºC temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a 90 km/h speed limit, a person’s 1.8 m height, and a distance of 2.0 m are all scalars, or quantities with no specified direction. Note, however, that a scalar can be negative, such as a −20ºC temperature. In this case, the minus sign indicates a point on a scale rather than a direction. Scalars are never represented by arrows. (A comparison of scalars vs. vectors is shown in. )

Scalars vs. Vectors : A brief list of quantities that are either scalars or vectors.

  • To describe motion, kinematics studies the trajectories of points, lines and other geometric objects.
  • The study of kinematics can be abstracted into purely mathematical expressions.
  • Kinematic equations can be used to calculate various aspects of motion such as velocity, acceleration, displacement, and time.
  • Choosing a frame of reference requires deciding where the object’s initial position is and which direction will be considered positive.
  • Valid frames of reference can differ from each other by moving relative to one another.
  • Frames of reference are particularly important when describing an object’s displacement.
  • Displacement is the change in position of an object relative to its reference frame.
  • A vector is any quantity that has magnitude and direction.
  • A scalar is any quantity that has magnitude but no direction.
  • Displacement and velocity are vectors, whereas distance and speed are scalars.
  • kinematics : The branch of mechanics concerned with objects in motion, but not with the forces involved.
  • displacement : A vector quantity that denotes distance with a directional component.
  • frame of reference : A coordinate system or set of axes within which to measure the position, orientation, and other properties of objects in it.
  • scalar : A quantity that has magnitude but not direction; compare vector.
  • vector : A directed quantity, one with both magnitude and direction; the between two points.

LICENSES AND ATTRIBUTIONS

CC LICENSED CONTENT, SHARED PREVIOUSLY

  • Curation and Revision. Provided by : Boundless.com. License : CC BY-SA: Attribution-ShareAlike

CC LICENSED CONTENT, SPECIFIC ATTRIBUTION

  • OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42122/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • Kinematics. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/Kinematics . License : CC BY-SA: Attribution-ShareAlike
  • kinematics. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/kinematics . License : CC BY-SA: Attribution-ShareAlike
  • Kinematics. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/Kinematics . License : CC BY: Attribution
  • Provided by : Light and Matter. Located at : http://lightandmatter.com/lmb.pdf . License : CC BY: Attribution
  • OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42033/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • displacement. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/displacement . License : CC BY-SA: Attribution-ShareAlike
  • frame of reference. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/frame_of_reference . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, College Physics. October 25, 2012. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42033/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • Frames of Reference (1960) Educational Film. Located at : http://www.youtube.com/watch?v=aRDOqiqBUQY . License : Public Domain: No Known Copyright . License Terms : Standard YouTube license
  • Scalar (physics). Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/Scalar_(physics) . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42124/latest/?collection=col11406/1.7 . License : CC BY: Attribution
  • Vector (physics). Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/Vector_(physics) . License : CC BY-SA: Attribution-ShareAlike
  • scalar. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/scalar . License : CC BY-SA: Attribution-ShareAlike
  • vector. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/vector . License : CC BY-SA: Attribution-ShareAlike
  • Vector (physics). Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/Vector_(physics) . License : CC BY: Attribution
  • Scalars and Vectors. Provided by : National Air and Space Association. Located at : http://www.grc.nasa.gov/WWW/k-12/airplane/vectors.html . License : Public Domain: No Known Copyright
  • Scalars and Vectors. Located at : http://www.youtube.com/watch?v=EUrMI0DIh40 . License : Public Domain: No Known Copyright . License Terms : Standard YouTube license

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • TaskTracker
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

kinematics assignment pdf

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law
  • Sample Problems and Solutions
  • Kinematic Equations Introduction
  • Solving Problems with Kinematic Equations
  • Kinematic Equations and Free Fall
  • Kinematic Equations and Kinematic Graphs

UsingKinEqns1ThN.png

Check Your Understanding

Answer: d = 1720 m

Answer: a = 8.10 m/s/s

Answers: d = 33.1 m and v f = 25.5 m/s

Answers: a = 11.2 m/s/s and d = 79.8 m

Answer: t = 1.29 s

Answers: a = 243 m/s/s

Answer: a = 0.712 m/s/s

Answer: d = 704 m

Answer: d = 28.6 m

Answer: v i = 7.17 m/s

Answer: v i = 5.03 m/s and hang time = 1.03 s (except for in sports commericals)

Answer: a = 1.62*10 5 m/s/s

Answer: d = 48.0 m

Answer: t = 8.69 s

Answer: a = -1.08*10^6 m/s/s

Answer: d = -57.0 m (57.0 meters deep) 

Answer: v i = 47.6 m/s

Answer: a = 2.86 m/s/s and t = 30. 8 s

Answer: a = 15.8 m/s/s

Answer: v i = 94.4 mi/hr

Solutions to Above Problems

d = (0 m/s)*(32.8 s)+ 0.5*(3.20 m/s 2 )*(32.8 s) 2

Return to Problem 1

110 m = (0 m/s)*(5.21 s)+ 0.5*(a)*(5.21 s) 2

110 m = (13.57 s 2 )*a

a = (110 m)/(13.57 s 2 )

a = 8.10 m/ s 2

Return to Problem 2

d = (0 m/s)*(2.60 s)+ 0.5*(-9.8 m/s 2 )*(2.60 s) 2

d = -33.1 m (- indicates direction)

v f = v i + a*t

v f = 0 + (-9.8 m/s 2 )*(2.60 s)

v f = -25.5 m/s (- indicates direction)

Return to Problem 3

a = (46.1 m/s - 18.5 m/s)/(2.47 s)

a = 11.2 m/s 2

d = v i *t + 0.5*a*t 2

d = (18.5 m/s)*(2.47 s)+ 0.5*(11.2 m/s 2 )*(2.47 s) 2

d = 45.7 m + 34.1 m

(Note: the d can also be calculated using the equation v f 2 = v i 2 + 2*a*d)

Return to Problem 4

-1.40 m = (0 m/s)*(t)+ 0.5*(-1.67 m/s 2 )*(t) 2

-1.40 m = 0+ (-0.835 m/s 2 )*(t) 2

(-1.40 m)/(-0.835 m/s 2 ) = t 2

1.68 s 2 = t 2

Return to Problem 5

a = (444 m/s - 0 m/s)/(1.83 s)

a = 243 m/s 2

d = (0 m/s)*(1.83 s)+ 0.5*(243 m/s 2 )*(1.83 s) 2

d = 0 m + 406 m

Return to Problem 6

(7.10 m/s) 2 = (0 m/s) 2 + 2*(a)*(35.4 m)

50.4 m 2 /s 2 = (0 m/s) 2 + (70.8 m)*a

(50.4 m 2 /s 2 )/(70.8 m) = a

a = 0.712 m/s 2

Return to Problem 7

(65 m/s) 2 = (0 m/s) 2 + 2*(3 m/s 2 )*d

4225 m 2 /s 2 = (0 m/s) 2 + (6 m/s 2 )*d

(4225 m 2 /s 2 )/(6 m/s 2 ) = d

Return to Problem 8

d = (22.4 m/s + 0 m/s)/2 *2.55 s

d = (11.2 m/s)*2.55 s

Return to Problem 9

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(2.62 m)

0 m 2 /s 2 = v i 2 - 51.35 m 2 /s 2

51.35 m 2 /s 2 = v i 2

v i = 7.17 m/s

Return to Problem 10

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(1.29 m)

0 m 2 /s 2 = v i 2 - 25.28 m 2 /s 2

25.28 m 2 /s 2 = v i 2

v i = 5.03 m/s

To find hang time, find the time to the peak and then double it.

0 m/s = 5.03 m/s + (-9.8 m/s 2 )*t up

-5.03 m/s = (-9.8 m/s 2 )*t up

(-5.03 m/s)/(-9.8 m/s 2 ) = t up

t up = 0.513 s

hang time = 1.03 s

Return to Problem 11

(521 m/s) 2 = (0 m/s) 2 + 2*(a)*(0.840 m)

271441 m 2 /s 2 = (0 m/s) 2 + (1.68 m)*a

(271441 m 2 /s 2 )/(1.68 m) = a

a = 1.62*10 5 m /s 2

Return to Problem 12

  • (NOTE: the time required to move to the peak of the trajectory is one-half the total hang time - 3.125 s.)

First use:  v f  = v i  + a*t

0 m/s = v i  + (-9.8  m/s 2 )*(3.13 s)

0 m/s = v i  - 30.7 m/s

v i  = 30.7 m/s  (30.674 m/s)

Now use:  v f 2  = v i 2  + 2*a*d

(0 m/s) 2  = (30.7 m/s) 2  + 2*(-9.8  m/s 2 )*(d)

0 m 2 /s 2  = (940 m 2 /s 2 ) + (-19.6  m/s 2 )*d

-940  m 2 /s 2  = (-19.6  m/s 2 )*d

(-940  m 2 /s 2 )/(-19.6  m/s 2 ) = d

Return to Problem 13

-370 m = (0 m/s)*(t)+ 0.5*(-9.8 m/s 2 )*(t) 2

-370 m = 0+ (-4.9 m/s 2 )*(t) 2

(-370 m)/(-4.9 m/s 2 ) = t 2

75.5 s 2 = t 2

Return to Problem 14

(0 m/s) 2 = (367 m/s) 2 + 2*(a)*(0.0621 m)

0 m 2 /s 2 = (134689 m 2 /s 2 ) + (0.1242 m)*a

-134689 m 2 /s 2 = (0.1242 m)*a

(-134689 m 2 /s 2 )/(0.1242 m) = a

a = -1.08*10 6 m /s 2

(The - sign indicates that the bullet slowed down.)

Return to Problem 15

d = (0 m/s)*(3.41 s)+ 0.5*(-9.8 m/s 2 )*(3.41 s) 2

d = 0 m+ 0.5*(-9.8 m/s 2 )*(11.63 s 2 )

d = -57.0 m

(NOTE: the - sign indicates direction)

Return to Problem 16

(0 m/s) 2 = v i 2 + 2*(- 3.90 m/s 2 )*(290 m)

0 m 2 /s 2 = v i 2 - 2262 m 2 /s 2

2262 m 2 /s 2 = v i 2

v i = 47.6 m /s

Return to Problem 17

( 88.3 m/s) 2 = (0 m/s) 2 + 2*(a)*(1365 m)

7797 m 2 /s 2 = (0 m 2 /s 2 ) + (2730 m)*a

7797 m 2 /s 2 = (2730 m)*a

(7797 m 2 /s 2 )/(2730 m) = a

a = 2.86 m/s 2

88.3 m/s = 0 m/s + (2.86 m/s 2 )*t

(88.3 m/s)/(2.86 m/s 2 ) = t

t = 30. 8 s

Return to Problem 18

( 112 m/s) 2 = (0 m/s) 2 + 2*(a)*(398 m)

12544 m 2 /s 2 = 0 m 2 /s 2 + (796 m)*a

12544 m 2 /s 2 = (796 m)*a

(12544 m 2 /s 2 )/(796 m) = a

a = 15.8 m/s 2

Return to Problem 19

v f 2 = v i 2 + 2*a*d

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(91.5 m)

0 m 2 /s 2 = v i 2 - 1793 m 2 /s 2

1793 m 2 /s 2 = v i 2

v i = 42.3 m/s

Now convert from m/s to mi/hr:

v i = 42.3 m/s * (2.23 mi/hr)/(1 m/s)

v i = 94.4 mi/hr

Return to Problem 20

Mr. Lam's Classroom

Physics 11 – Kinematics

Kinematics Assignment - Class 11 PDF Download

Faqs on kinematics assignment - class 11, previous year questions with solutions, kinematics assignment - class 11, extra questions, viva questions, study material, past year papers, mock tests for examination, important questions, sample paper, semester notes, shortcuts and tricks, practice quizzes, objective type questions, video lectures.

kinematics assignment pdf

Kinematics Assignment Free PDF Download

Importance of kinematics assignment, kinematics assignment notes, kinematics assignment class 11 questions, study kinematics assignment on the app, welcome back, create your account for free.

kinematics assignment pdf

Forgot Password

Unattempted tests, change country, practice & revise.

Browse Course Material

Course info, instructors.

  • Prof. J. Kim Vandiver
  • Prof. David Gossard

Departments

  • Mechanical Engineering
  • Civil and Environmental Engineering

As Taught In

  • Solid Mechanics
  • Classical Mechanics

Learning Resource Types

Engineering dynamics, kinematics handout.

This file contains information regarding kinematics handout.

facebook

You are leaving MIT OpenCourseWare

IMAGES

  1. Kinematics Assignment

    kinematics assignment pdf

  2. kinematics notes for iit jee pdf| Kinematics class 12th

    kinematics assignment pdf

  3. Kinematics Worksheet With Answers

    kinematics assignment pdf

  4. 18-kinematics.pdf

    kinematics assignment pdf

  5. Rigid Body Kinematics Assignment Problems

    kinematics assignment pdf

  6. Lab 2 Kinematics Assignment for Physics

    kinematics assignment pdf

VIDEO

  1. Assignment 1| Inverse Kinematics

  2. kinematics assignment friday

  3. Problem 2.35

  4. AS

  5. SOLUTION OF ASSIGNMENTS

  6. Inverse Kinematics with FABRIK

COMMENTS

  1. Assignments

    1D Kinematics - Position and Velocity Problem Set 1 (PDF) Derivatives in Kinematics. Acceleration from Position. Shooting the Apple. Braking Car. Sketch the Motion. Pedestrian and Bike at Intersection. 2 1D Kinematics - Acceleration 3 2D Kinematics - Position, Velocity, and Acceleration Week 2: Newton's Laws: 4 Newton's Laws of Motion ...

  2. PDF Kinematics in One Dimension

    One dimensional kinematics. For the case of 1-dimensional motion, we'll only consider a change of position in one direction. It could be any of the three coordinate axes. Just a description of the motion, without attempting to analyze the cause. To describe motion we need: Coordinate System (origin, orientation, scale) the object which is moving.

  3. PDF Physics Intro & Kinematics

    He accidentally runs over an innocent moose crossing the road, so he slows to a stop to check on the poor moose. He pauses for a while until he determines the moose is squashed flat and deader than a doornail. Fleeing the scene of the crime, Schmedrick takes off again in the same direction, speeding up quickly.

  4. Online Textbook

    Chapter 5: Two Dimensional Kinematics (PDF - 2.3 MB) Chapter 6: Circular Motion (PDF - 2.6 MB) Chapter 7: Newton's Laws of Motion (PDF) ... assignment Problem Sets. menu_book Online Textbook. Download Course. Over 2,500 courses & materials Freely sharing knowledge with learners and educators around the world.

  5. PDF phys03-kinematics.pdf

    Topic 3: Kinematics - Displacement, Velocity, Acceleration, 1- and 2-Dimensional Motion. to see a logical building of mechanics. Topic one activities have introduced. displacement and velocity and will now be enhanced. The instructor should. now define displacement, velocity and acceleration. A new displacement.

  6. 2.1: Basics of Kinematics

    Kinematics is the branch of physics that deals with the motion of objects without considering the forces that cause it. In this chapter, you will learn the basic concepts and principles of kinematics, such as displacement, velocity, acceleration, and free fall. You will also learn how to use equations and graphs to describe the motion of objects in one and two dimensions. This chapter will ...

  7. PDF PHYSICS 211 LAB #1: Kinematics

    Set up to graph distance, velocity, and acceleration. • Pull down the File menu and select Open.... Click once on Desktop, twice on 211 LAB FILES, then twice more on the Lab 1 folder. The files you need for this laboratory will be kept in this folder. Double click on CONSTANT VELOCITY to load it.

  8. PDF Kinematics: Practice Problems with Solutions in Physics Physexams

    Kinematics: Practice Problems with Solutions in Physics Physexams.com In all standard kinematic equations the initial velocity v 0 is ubiquitous. Here, the initial velocity is not given so we can use an special equation which is v 0 free i.e. x−x 0 = vt−1 2 at2 where v is the velocity at time t. Therefore, x−x 0 = vt− 1 2 at2 417.2 −0 ...

  9. Kinematics Assignment 12

    Kinematics Assignment #1. Give an example of a moving object that has a velocity vector and an acceleration vector in the same direction and an example of one that has velocity and acceleration vectors in opposite directions. A rifle fires a bullet exactly horizontally at height h above a horizontal field. At the exact instant the the bullet if ...

  10. PDF Physics 1-D Kinematics: Relative Velocity

    1-D Kinematics: Relative Velocity Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 2012-2013 Department of Curriculum and Pedagogy a place of mind F A C U L T Y O F E D U C A T I O N . Relative Velocities .

  11. PDF Two-Dimensional Rotational Kinematics

    Concept Question: Kinetic Energy. disk with mass M and radius R is spinning with angular speed ω about an axis that passes through the rim of the disk perpendicular to its plane. Moment of inertia about cm is (1/2)M R2, (you will calculate this in a homework problem). Its kinetic energy is. (1/4)M R2 ω2.

  12. Kinematic Equations: Sample Problems and Solutions

    Kinematic equations relate the variables of motion to one another. Each equation contains four variables. The variables include acceleration (a), time (t), displacement (d), final velocity (vf), and initial velocity (vi). If values of three variables are known, then the others can be calculated using the equations. This page demonstrates the process with 20 sample problems and accompanying ...

  13. Problem Set 1

    Problem Set 1 contains the following problems: Car and Bicycle Rider. Elevator Trip. Rocket Launch. Throw and Catch. Vertical Collision. Problem Set 1 (PDF)

  14. PDF Study Guide 1: Introduction, Vectors and Kinematics

    Homework Assignments. General information related to homework: 1) There will be a homework assignment due at the beginning of each lecture. Homework is only accepted at that time except in extraordinary circumstances. 2) We have a great number of papers to grade and a few rules are needed to help you get your graded homework back as quickly as ...

  15. PDF Ultimate Kinematics Review

    Ultimate Kinematics Review - Pittmath.com

  16. Physics 11

    6. 20 Feb 2024. (Tue) Notes: Graphs of Motion (Velocity vs. Time) Worksheet: Graphs of Motion II ( solutions) Assignment: Kinematics Video Analysis due next class (print and bring to class) Lab: Acceleration due to Gravity Lab complete Introduction pre-lab questions for next class. In-Class Questions.

  17. PDF Inverse Kinematics

    Manipulator Kinematics and DH Parameters MEAM 520, University of Pennsylvania Katherine J. Kuchenbecker, Ph.D. September 18, 2012 This assignment is due on Thursday, September 27 (updated),by5:00p.m.sharp.Youshouldaim to turn the paper part in during class that day. If you don't finish until later in the day, you can turn it

  18. Kinematics I Assignment (pdf)

    Name: _____ SPH4U: Kinematics Page 3 of 22 Instantaneous velocity Section 1.1 Part 1 Assignment 1. A bus leaves the depot and travels for 24 minutes along a 12 km [E] route taking many stops along the way. The bus returns to the depot 32 minutes later, travelling directly west.

  19. kinematics.pdf

    kinematics.pdf. Description: Lecture handout on kinematics, dynamics, how the course is laid out, some basics on frames and derivatives of vectors, and calculating velocities and accelerations of given points. ... assignment_turned_in Programming Assignments with Examples. co_present Instructor Insights. Download Course. Over 2,500 courses ...

  20. PHY-150 2-1 Kinematics Lab Report

    PHY-150 2-1 Kinematics Lab Report 2022 kinematics ariana danowski activity graph and interpret motion data of moving object activity table time axis) (seconds) Skip to document. ... Assignments. 100% (32) 4. Physics project 3-1. Intro Physics: Mechanics. Assignments. 100% (13) 3. Project 3 Energy and Momentum. Intro Physics: Mechanics. Assignments.

  21. Kinematics Assignment

    Kinematics Assignment Free PDF Download The Kinematics Assignment is an invaluable resource that delves deep into the core of the Class 11 exam. These study notes are curated by experts and cover all the essential topics and concepts, making your preparation more efficient and effective. ...

  22. Week 1: Kinematics

    Lesson 1: 1D Kinematics - Position and Velocity. 1.1 Coordinate Systems and Unit Vectors in 1D Position Vector in 1D. 1.2 Position Vector in 1D. 1.3 Displacement Vector in 1D. 1.4 Average Velocity in 1D. 1.5 Instantaneous Velocity in 1D. 1.6 Derivatives. 1.7 Worked Example - Derivatives in Kinematics.

  23. PDF 0 Overview Instructions

    CSE250: Data Structures - Spring 2024 Written Assignment #5 0 Overview Instructions Due Date: Tuesday, May 7 @ 11:59PM Total points: 30 Your written solution may be either handwritten and scanned, or typeset. Either way, you must produce a PDF that is legible and displays reasonably on a typical PDF reader. This PDF should be submitted via ...

  24. Kinematics Handout

    This file contains information regarding kinematics handout. Resource Type: Lecture Notes. pdf. 765 kB Kinematics Handout Download File DOWNLOAD. Course Info Instructors ... assignment_turned_in Problem Sets with Solutions. grading Exams with Solutions. theaters Recitation Videos.